美國FDA發布於海內外應對2019年新型冠狀病毒之行動聲明

  美國食品及藥物管理局(Food and Drug Administration, FDA)於2020年2月14日,發布於海內外應對2019年新型冠狀病毒之行動聲明,其包括:

  1. 主動監控供應鏈:由於疫情可能影響醫療產品供應鏈,FDA已與數百家藥品與醫療器材製造商保持聯繫,並與歐洲藥品管理局等全球監管機構保持同步,以評估監控潛在之製造中斷的警訊,且與生物製劑製造商聯繫,以評估有關原料之供應問題。若FDA確定醫療產品可能會短缺,則可能會採取與製造商緊密合作、加快對替代供應之審查等措施來防止短缺。
  2. 針對海外生產之FDA產品合規性之查驗與監控:FDA採取基於風險之模型來確認要進行查驗之公司,基於某些特定條件,會被認為具有較高風險之場所會被優先查驗,這些條件包括固有之產品風險、患者接觸產品之程度、過去查驗之歷史紀錄等等。除了查驗之外,其他防止不符FDA標準之產品進入美國市場之工具包括進口警示、增加進口採樣與篩查、替代查驗之紀錄要求(requesting records)。FDA可對市場上不合法之產品或違法之公司或個人採取監管與強制措施,例如警告信、扣押或禁制令。
  3. 消費品安全:美國海關暨邊境保護局將輸入美國、受FDA監管之產品交由FDA審查,其必須遵守與美國國內產品相同之標準,在FDA決定其可接受性之前不得將其分銷至美國。FDA並成立跨機關之專案小組,密切監控聲稱可預防、治療或治癒新型冠狀病毒疾病之詐欺性產品和虛假產品,並採取可能之執法行動。
  4. 對於診斷、治療與預防疾病之努力:FDA致力於促進安全有效之醫療對策的發展,提供法規建議、指導和技術援助,以促進針對用於此病毒之疫苗、治療和診斷測試之開發和可用性。FDA已核發緊急使用授權(Emergency Use Authorization, EUA),以便立即使用由美國疾病管制與預防中心所開發之診斷試劑,並已制定用於檢測病毒之EUA審查範本,其中概述申請EUA前所需之資料要求,目前已提供給表示有興趣開發該病毒之診斷工具之多位開發者。
  5. 後續行動:FDA將密切監視疫情並與跨部門合作夥伴、國際合作夥伴、醫療產品開發商與製造商合作,以幫助推進針對病毒之應對措施。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 美國FDA發布於海內外應對2019年新型冠狀病毒之行動聲明, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8413&no=64&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

美國參議院於2022年4月提出《演算法問責法案》對演算法治理再次進行立法嘗試

  《演算法問責法案》(Algorithmic Accountability Act)於2022年4月由美國參議院提出,此法案係以2019年版本為基礎,對演算法(algorithm)之專業性與細節性事項建立更完善之規範。法案以提升自動化決策系統(automated decision systems, ADS)之透明度與公平性為目的,授權聯邦貿易委員會(Federal Trade Commission, FTC)制定法規,並要求其管轄範圍內之公司,須就對消費者生活產生重大影響之自動化決策系統進行影響評估,公司亦須將評估結果做成摘要報告。   《演算法問責法案》之規範主體包括:(1)公司連續三年平均營業額達5000萬美元,或股權價值超過2.5億美元者,並處理或控制之個人資料超過100萬人次;以及(2)公司過去三年內,財務規模至少為前者之十分之一,且部署演算法開發以供前者實施或使用者。ADS影響評估應檢視之內容包括:   1.對決策過程進行描述,比較分析其利益、需求與預期用途;   2.識別並描述與利害關係人之協商及其建議;   3.對隱私風險和加強措施,進行持續性測試與評估;   4.記錄方法、指標、合適資料集以及成功執行之條件;   5.對執行測試和部署條件,進行持續性測試與評估(含不同群體);   6.對代理商提供風險和實踐方式之支援與培訓;   7.評估限制使用自動化決策系統之必要性,並納入產品或其使用條款;   8.維護用於開發、測試、維護自動化決策系統之資料集和其他資訊之紀錄;   9.自透明度的角度評估消費者之權利;   10.以結構化方式識別可能的不利影響,並評估緩解策略;   11.描述開發、測試和部署過程之紀錄;   12.確定得以改進自動化決策系統之能力、工具、標準、資料集,或其他必要或有益的資源;   13.無法遵守上述任一項要求者,應附理由說明之;   14.執行並記錄其他FTC 認為合適的研究和評估。   當公司違反《演算法問責法案》及其相關法規有不正當或欺騙性行為或做法時,將被視為違反《聯邦貿易委員會法》(Federal Trade Commission Act)規定之不公平或欺騙性行為,FTC應依《聯邦貿易委員會法》之規定予以處罰。此法案就使用ADS之企業應進行之影響評估訂有基礎框架,或可作為我國演算法治理與人工智慧應用相關法制或政策措施之參酌對象,值得持續追蹤。

英國政府技術移轉辦公室發布知識資產商業化指引,推動公部門研發成果商業化

英國政府技術移轉辦公室(Government Office for Technology Transfer, GOTT)於2025年5月9日發布「知識資產商業化指引」(The Knowledge Asset Commercialisation Guide),指導公部門及其研究機構(Public Sector Bodies, PSB) 透過技術移轉、衍生新創等途徑,促進其研發成果,即知識資產(Knowledge Asset, KA)商業化。指引包含KA商業化開發路線及技轉授權方法等,並建議PSB內部KA管理人員(如KA管理負責人及KA經理)使用。重點簡述如下: 1. 指引建議PSB以下行動策略:制訂KA管理策略,且應包含創作者獎勵政策、衍生新創政策、研發人員轉任借調原則、利益衝突管理程序等;對KA進行盡職調查(Due Diligence, DD),如確認研發人員對KA貢獻度、確認PSB具授權KA之權利;擇定KA商業化路線時,須確認其商業化目標、創造哪些產品及服務、市場機會與潛在客戶、參與團隊與資源;對商業夥伴DD,如KA授權對象、潛在投資者等,確認其合作目標與識別潛在利益衝突。 2. 指引建議4種KA商業化路線: (1) 於PSB內透過既定機制或創立新部門,進一步開發與商業化。 (2) 向外授權KA使用權利,指引認為此方式比移轉KA所有權更為妥適,因PSB可保有KA所有權、相關控制措施以及實質影響力。 (3) 成立KA衍生新創,PSB將KA使用權利授權予衍生新創,進而開發新產品及服務。 (4) 成立合夥企業,類似運用KA衍生新創,惟此路線下,PSB將與現有第三方合作成立新企業,兩方均持有股份並簽署合夥協議。

因應綠色採購 環保標章實驗室認證問題有待解決

  近年來,國際企業強調「綠色商機」,綠色競爭力更成為台灣企業進軍國際市場的指標之一。政府配合綠色風潮,鼓勵國內綠色生產及綠色消費,在政府採購法增列綠色採購條款,並通過「機關優先採購環境保護產品辦法」。然而這些美意,卻可能因為環保標章實驗室認證問題,大打折扣。   造成上述結果的主要原因是,我國因相關環保法令不周全,環保管理、監督單位權責不一,形成三不管局面,影響廠商競爭力。舉例而言,現在環保署嚴格把關環保標章實驗室,檢查近 20 家實驗室,最後只認定三家有合格檢測能力,廠商要取得環保標章,一定要找這三家業者,形成供需嚴重失衡局面,廠商耗時、浪費金錢,還是拿不到環保標章。   另外,環保標章實驗室的管理單位,應該是環保署還是經濟部標準檢驗局;發生爭議事件,環保署和標準局各有說詞。環保標章是環保署核發,但實驗室檢測、管理則由標檢局負責,故而出現三不管的局面。   今年 7 月 1 日 ,歐盟全面執行 RoHS (無鉛製程)環保措施,明年,歐盟開始執行 WEEE (廢棄電機電子產品回收)環保措施,由於台灣資訊大廠 98% 為出口導向,這兩個規定使我國資訊廠商不得不審慎因應之,然而, RoHS 及 WEEE 僅是一個開端,未來歐盟一旦通過 REACH 規則,因環保要求而受影響的產業將更多,可見環保標章實驗室認證問題,必須嚴格看待並儘速解決。

TOP