法國《數位服務稅法》(Digital Services Tax Act)

  法國國民議會於2019年7月11日通過《數位服務稅法》(Digital Services Tax Act),並於當月24日由總統簽署,翌日生效。《數位服務稅法》將對境外數位服務業者的數位服務營收(Digital Turnover)課徵3%稅金。所謂「數位服務業者」包含媒介服務業者(Intermediary Services)或在數位介面提供精準行銷服務(Targeted Advertising)者;而「數位服務營收」包含廣告營收、平台佣金、轉售個人資料之所得。

  跨境電商影響傳統商業模式並衍生稅收課徵的難題,經濟合作暨發展組織(Organization of Economic Cooperation and Development, OECD)於2015年提出稅基侵蝕及利潤移轉方案(Base Erosion and Profit Shifting, BEPS),行動方案之一即是數位時代的稅徵議題(Tax Challenges Arising from Digitalisation),並於2019年10月9日亦向公眾徵詢數位稅之意見。而歐盟亦從2017年即開始研擬是否對於數位服務課稅,然而尚無共識。

  法國率先提出《數位服務稅法》,被外界解讀為抗衡美國科技巨擘Google、Apple、Facebook、Amazon而設,取四巨擘的字首稱之GAFA稅(GAFA Tax)。對此,法國官方澄清,境外數位服務業巨頭比歐洲中小企業少付了14%稅金,對法國造成實質的負面影響。而受《數位服務稅法》影響的團體是在前一個會計年度,全球數位服務營收超過7500萬歐元或在法國數位服務營收超過250萬歐元的公司,受影響者估計超過30間,雖然也會影響Google等美國科技業巨擘,但並非針對性,亦非為對抗美國而設的專法。然而,法國《數位服務稅法》仍引起美國官方的反彈並啟動「301條款調查」(Section 301 Investigation),該調查報告指控法國的數位稅具貿易歧視之虞。美、法雙方代表於2020年1月28日就數位稅進行對話,美國承諾不會對法國進行關稅報復,法國表示對於數位稅的推行不會退讓。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 法國《數位服務稅法》(Digital Services Tax Act), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8416&no=64&tp=5 (最後瀏覽日:2026/01/05)
引註此篇文章
你可能還會想看
印度電力部公布「綠色氫能政策」,擬透過政策誘因建立綠氫產業鏈

  印度電力部(Ministry of Power)於2022年2月17日公布「綠色氫能政策」(Green Hydrogen Policy),宣告未來擬透過稅制、費用等誘因,建立綠色氫能產業鏈,以達到印度於COP26高峰會所承諾之減碳目標。   有鑑於綠色氫能是直接由再生能源電力所產生,故其相較於灰色氫能(註:由石化過程所產生之氫能)及藍色氫能(註:經碳封存之灰氫)而言,擁有更低之碳排放,有助於印度於COP26高峰會所承諾之減碳目標。然於技術或經濟層面而言,綠氫成本因為其產生、運輸、儲存過程要求相當高之費用以及成本,故遲遲無法普及,印度電力部為增進業者建立氫能產業鏈之經濟誘因,於2月17日公布前揭政策,以為因應。   印度電力部前揭政策,擬針對用地、電力市場等法規進行調適,相關法規調適重點如下: 定義綠色氫能為「直供」或「轉供」再生能源電力電解所得之氫能,也包含生物質能所生產之氫能。 於2025年6月30日前營運之綠色氫能生產業者,可免除25年之州際電力傳輸費用。 前揭綠色氫能生產業者,其所使用之電力可以是就地自再生能源發電設備取得(co-located),也可以是透過電力傳輸自其他再生能源發電設備所取得,不論該綠色氫能業者是否實際營運再生能源發電設備。 綠色氫能生產設備可被視為再生能源發電設備,被設置在相關用地上,並且,將開放綠色氫能設備設置於商港區域,以利綠氫出口。 因生產氫能所消耗或購買之再生能源電力,可計入RPS或RPO(Renewable Purchase Obligation)義務容量當中。 各州輸配電業,應允許綠色氫能生產業者加入電力交易市場。 承上,綠色氫能生產業者可進入餘電交易(banking)市場,並且餘電交易手續費應不超過「前一年度再生能源FIT價格」以及「當月日前交易市場之平均交易價格」間之差額。以避免氫能業者因經濟理由而被排除於餘電市場外。   但不論如何,對於印度而言,綠色氫能還只是發展初期階段,目前綠色氫能價格為每公斤3至6.5美元,而印度政府目標是於2030年將其降至1美元。對於大量仰賴能源進口之印度而言(85%石油及53%天然氣為進口),綠色氫能對於該國之能源自主有著相當重要的角色,因此印度政府將不餘遺力發展氫能。

歐盟氣候相關資訊報告準則

  歐盟執委會(EU Commission)於2019年6月20日發布「氣候相關資訊報告準則」(Guidelines on reporting climate-related Information),該準則為歐盟執委會2018年3月通過的「永續金融行動計畫」(Action plan on sustainable finance )之一部分,旨在促使企業更完整的揭露其活動對氣候之影響,以及氣候變化對其業務之風險,讓投資人與融資機構獲有更全面的企業資訊以進行決策,同時引導市場資金轉向友善氣候之企業或商業模式。   關於企業氣候相關資訊之揭露,歐盟早在2014年11月15日通過的「非財務資訊報告指令」(Non-Financial Reporting Directive, 2014/95/EU)中要求擁有500名以上員工的大型企業必須揭露其經營與氣候保護間之關聯;為讓所有歐盟企業均有一致可資遵循的揭露標準,執委會嗣於2017年5月7日發布「非財務資訊報告準則」(Guidelines on Non-Financial Reporting);而本次發布之「氣候相關資訊報告準則」則是在2017年的「非財務資訊報告準則」基礎上所進行的補充,其特別之處在於整合了金融穩定委員會(Financial stability board)轄下「氣候相關財務揭露工作組」(Taskforce on climate-related financial disclosures, TCFD)所擬定之氣候資訊揭露建議,該建議詳細的說明了企業編制非財務類報告以揭露企業所面臨的氣候風險與機遇作法。   本準則建議企業分別在(1)商業模式、(2)企業政策、(3)政策成果、(4)風險管理、(5)關鍵績效指標五方面進行氣候相關資訊之揭露:在商業模式方面,例如描述公司對自然資源的依賴性、說明公司商業模式在應對氣候風險時的彈性及可能的變化;在企業政策方面,例如解釋公司如何將氣候相關問題納入運營決策流程、揭露公司在其能源政策中所設之能源相關目標;在政策成果方面,例如參考財務KPI做法描述公司在氣候方面的表現如何影響其財務績效;在風險管理方面,例如根據地理位置、業務活動詳細列出與氣候相關的主要風險、描述進行風險識別、評估的方法與頻率;在關鍵績效指標方面,例如描述主要氣候相關風險與財務關鍵績效指標之間的聯繫。

中國大陸「網路預約出租汽車經營管理暫行辦法」

  所謂中國大陸《網路預約出租汽車經營管理暫行辦法》,是指中國大陸針對目前在各國都陸續發生法律爭議的網路出租車叫車平臺,例如源自美國加州舊金山的優步(Uber),或是中國大陸當地發展的滴滴打車服務,所制定的專法規範,以期解決網路出租車叫車平臺所可能產生的法律爭議。   類似Uber的服務型態,之所以會產生法律爭議,主要是因為汽車運輸載客的商業行為,在各國都會受到汽車運輸業的相關管制,以保障運輸服務乘客安全及消費權益。以德國為例,就曾因此對Uber進行行政處罰,並進一步於司法判決中要求Uber司機需取得營運牌照。   也因此中國大陸交通運輸部在2016年7月14日通過,並於2016年11月1日起施行《網路預約出租汽車經營管理暫行辦法》,該規定將網路預約出租汽車服務定義為「預約出租客運」,平台業者需負擔車輛營運、收益分配與司機管理等等的任務,且其地位為中國大陸汽車運輸載客法規中的客運服務承運人,需負擔相當責任,而並非如Uber等所主張的其僅為仲介平台,不具客運服務承運人之地位。   此外,該辦法亦要求網路預約出租汽車之司機應滿足無交通肇事犯罪紀錄、無危險駕駛犯罪紀錄、無吸毒紀錄、無飲酒後駕駛紀錄、無暴力犯罪紀錄等條件。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

TOP