歐盟執委會發布《2019歐盟產業研發投資計分板》,美國和歐盟為世界研發投資最主要地區

  歐盟執委會(European Commission, EC)於2019年12月18日發布《2019歐盟產業研發投資計分板》(The 2019 EU Industrial R&D Investment Scoreboard)。產業研發投資計分板是歐盟每年出具一次的報告,2019年計分板報告包含2500家在2018-2019年間投入最多研發資金的企業,分別位於全球44個國家/地區,每一企業的研發投資金額超過3000萬歐元,總計約為8234億歐元,為全球研發支出的90%。在這2500家企業中,551家來自歐盟公司,為投資總額的25%;769家來自美國,為投資總額的38%;318家來自日本,佔13%;507家中國公司,佔12%。

  報告中指出,2018年企業研發投資總額較2017年增加8.9%,主要是中國在全球研發資金投入比例不斷增加。另外,研發投資高度集中於大型企業;在這2500家企業中,前10大、前50大企業分別佔研發總額的15%和40%。前50大企業中,最多者為美國企業22家和歐盟企業17家。再從研發投資領域觀察,前三大領域分別為資通訊產業(38.7%)、健康(20.7%)和汽車產業(17.2%),佔總量的76.6%。但每一個國家重視的領域不盡相同,例如歐盟投資20%在資通訊、21.6%在健康、31%汽車,而美國的資通訊研發投資佔了52.8%、26.7%在健康,僅有7.6%在汽車。

  再從個別企業研發投資排名來看,前四大企業分別為Alphabet、Samsung、Microsoft和Volkswagen。另外,報告統計在過去的15年中,有8家企業在全球研發投資金額排名中上升了70名以上,分別為:Alphabet、華為、蘋果、Facebook、阿里巴巴、Celgene、Gilead Sciences和德國馬牌;也代表這15年間資通訊、生技與汽車產業發展的重要性。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 歐盟執委會發布《2019歐盟產業研發投資計分板》,美國和歐盟為世界研發投資最主要地區, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8420&no=55&tp=1 (最後瀏覽日:2025/12/09)
引註此篇文章
你可能還會想看
世界智慧財產權組織發佈2015年全球創新指數排名

  世界智慧財產權組織於2015年9月17日發佈的2015年全球創新指數報告(The Global Innovation Index)顯示,瑞士、英國、瑞典、荷蘭和美國是世界上最具創新力的前5名國家。   全球創新指數自2007年起每年發布,2015 年全球創新指數是該指數的第8版,由康乃爾大學(Cornell University)、歐洲工商管理學院(INSEAD)和聯合國專門機構世界智慧財產權組織(WIPO)共同發布,現已成為重要的評比基準,為全球國家競爭力與政策發展重要項目。世界智慧財產權組織總幹事Francis Gurry在當天的新聞發佈會上說:「每個國家都必須找到最佳的政策組合,以調整其經濟內部創新與創造的潛力」。從整體觀看,今年前25位排名都是高收入經濟體,與以往相較變動不大。值得注意的是,瑞士已連續5年位居第一,英國則從4年前的第8位躍升至第2位。英國的智慧財產權部長說:「產出優秀的科研成果向來是英國的優良傳統,英國人口比率佔不到世界1%,但發表頂尖的研究成果佔16%,卓越的科研是英國躍升國際創新排名第2位的主要原因。英國政府致力於創新研發、為新創提供足夠的智慧財產權保護、支持新創產業。」其後依次為:瑞典、荷蘭、美國、芬蘭、新加坡、愛爾蘭、盧森堡和丹麥。亞洲國家中只有新加坡進入前10名。   該份報告顯示,在創新質量方面,其中美國和英國保持領先,主要是因為其擁有世界級的大學;接著是日本、德國和瑞士。在創新質量上得分較高的中等收入經濟體則有中國、巴西和印度。 為了支持全球創新討論、指引各項政策、強調良好的作法,需要利用相關指標對創新和相關政策表現進行評估。全球創新指數創造出一種環境,即是使這些相關創新因素得到持續評估,其特色列舉如下: 1. 141個國家的現況介紹,包括根據79項指標所得出之數據、排名與優勢情形。 2. 根據30多個國際公私部門指標所得出的79個數據表,其中55個是可靠數據,19個是綜合指標,5個是問卷調查。 3. 公開透明且可複製的計算方法,其中每個指數排名(全球創新指數、產出和投入分項指數)有90%的置信區間,加上對影響每年排名的因素進行分析。 2015年全球創新指數是以兩個分項指數的平均值計算。創新投入分項指數衡量的是顯現出創新活動的國家經濟因素,這些因素共分為五大類:(1)機構,(2)人力資本與研究,(3)基礎設施,(4)市場成熟度,和(5)商業成熟度。「創新產出分項指數」是由創新成果的實際創新產出為證,分為兩大類:(6)知識與技術產出及(7)創意產出。

科羅拉多州新法迫使網路購物巨擘亞馬遜退出該州市場

  美國網路購物龍頭業者亞馬遜(Amazon)於2010年3月宣布,肇因於科羅拉多州(Colorado)最新通過的網路稅法,該公司將中止與科羅拉多州當地網路業者之間的合作關係,消息披露後,隨即對4000位以上科羅拉多州民眾之生計產生劇烈影響。     亞馬遜於全美各州均推動所謂的「亞馬遜合夥事業」(Amazon Associates),參加此一合作模式的各州網路業者,只要網路使用者透過業者建置的網路連結而於亞馬遜網站進行消費時,業者便可自亞馬遜收取特定之佣金。而亞馬遜此次選擇退出科羅拉多州前,事實上該公司亦曾因網路課稅問題,而陸續退出北卡羅來納州(North Carolina)與羅得島州(Rhode Island)之網路購物市場。     然而,相較於先前北卡羅來納州與羅得島州網路營業稅課徵之對象,以設籍於該州的網路業者為主;此次科羅拉多州(Colorado)通過的新法,應被徵收營業稅之網路業者,則不以設籍該州為限,凡與該州居民進行交易而設籍於其他州的網路業者,亦須向該州納稅。同時,科羅拉多州當地居民進行網路購物時,將須繳交2.9%之網路消費稅。     亞馬遜表示,新法將使迫使該公司每年上繳約460萬元的稅額,以彌補科羅拉多州現階段13億元之預算赤字。無獨有偶,深受預算赤字所苦的加州,近來亦積極討論應否制定網路稅法,支持者表示新法若順利通過,可望每年為州政府貢獻超過1.5億美元的稅收,有助於彌補該州高達20億美元之預算缺口。

德國「智慧聯網倡議」

  德國聯邦經濟及能源部於2016年9月1日公布數位議程框架新的經費公告,以支持智慧聯網示範的實施與推廣。德國聯邦政府於2015年9月公布的智慧聯網(Initiative Intelligente Vernetzung)戰略,該戰略實施的4個面向如下:   (1)應用領域的支持:聚焦教育、能源、衛生、交通和管理五大應用領域的數位化和智慧化運用及發展,並排除相關實施障礙; (2)促進合作:促進資通訊技術與五大應用領域間的跨領域溝通與合作; (3)改善框架條件:加強投資環境並消除相關障礙;保護隱私權及加強網路安全;制訂相關標準化作業;提升商品或服務市場競爭力; (4)加強各界參與:促進各界參與及討論,共創及共享經濟利益。德國聯邦政府基於該戰略計劃,提出智慧聯網倡議,及提供開放式創新平台,促進不同領域的合作及整合運用,將有助於產業價值及競爭力的提升,並提高國際間合作的機會。   我國為發展智慧聯網相關產業,曾推出包括「智慧辨識服務推動計畫」、「智慧聯網商區整合示範推動計畫」等相關應用服務整合及解決方案計畫,今年更陸續推出「亞洲‧矽谷推動方案」、「數位國家‧創新經濟發展方案」,藉以提高數位生活服務使用普及率,並以創新驅動產業升級轉型。

英國發布人工智慧網路資安實務守則

英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。

TOP