日本於2018年6月公布「資料信託功能認定指引第一版」(情報信託機能の認定に係る指針ver1.0),期待藉此推動資料銀行發展,促進資料流通和利用。第一版指引係以資料銀行應具備之功能為中心,惟伴隨資料銀行業務發展,指引內除資料銀行基本功能外,亦應規範個人資料管理及向第三方提供資料之條件等內容,加上有論者認為第一版內有關資料銀行定義過於偏重功能描述,故總務省和經濟產業省於2019年1月起召開檢討會,重新檢討上開指引,最終於2019年10月8日公布「資料信託功能認定指引第二版」(情報信託機能の認定に係る指針ver2.0)。
第二版指引更新重點包括︰(1)修正資料銀行定義︰第一版指引僅強調資料銀行之功能,第二版則增加資料銀行之目的和資料銀行與個人間關係等內容;(2)重新定義並詳細說明資料種類和蒐集方法;(3)修正資料信託功能認定基準︰新增複數業者共同經營資料銀行,隱私保護對策以及確保資料銀行透明性和個人資料之自主控制等規定;(4)新增資料信託功能模範條款之應記載事項︰包括與限制行為能力人締結契約之程序,以及向第三方提供資料之條件等規定。為確保資料銀行透明性和個人資料之自主控制,第二版指引新增資料倫理審查會規定,要求資料銀行設置資料倫理審查會並定期向其報告,審查會則應就個人與資料銀行間契約、個資利用目的、向第三方提供資料之條件等事項提供建議。
本文為「經濟部產業技術司科技專案成果」
日亞化學與前員工、現任美國加州大學教授中村修二(Shuji Maka mura)達成和解,日亞化學要支付中村修二本人8億4400萬日圓的費用,以補償其在日亞化學任內發明藍光LED晶粒技術,並帶給日亞化學日後龐大收入的功勞。 中村修二去年1月因不甘其在日亞化學工作期間,開發相關藍光LED晶粒技術,為公司帶進3300億餘日圓的收益,但日亞化學卻將專利獨佔,並未支付中村修二合理的費用。中村修二遂向日本地院提出告訴,日本地方法院一審判日亞化學敗訴,需支付200億日圓作為中村修二的補償金。日亞化學不服再向高院上訴,近日傳出雙方已達成和解,以8億4400萬日圓達成和解,其中6億850萬日圓係中村修二在日亞化學工作時開發出藍光LED晶粒後,為公司帶進約3300餘億日圓中屬中村修二的貢獻所得。 相較於一審判決日亞化學要賠200億日圓來看,此次只需支付8億4000餘萬日圓,替日亞化學省下了一大筆錢,且可早日解決此紛爭,日亞化學在此次官司中不能算輸,還可確立日亞化學日後擁有藍光LED晶粒的所有技術專利,有利日亞化學未來拓展白光LED及藍光晶粒市場。一般認為,日亞化學急於與中村修二達成和解之因,主要是藍光L ED晶粒市場仍在大幅成長中,預估今年全球LED市場需求可達到50億美元,其中白光及藍光LED也佔到一半以上,未來更是以倍數成長。日亞化學如未能快速解決與中村修二的官司,恐影響日亞化學在藍光及白光LED市場上的領先地位。
美國OMB發布M-26-04備忘錄,確立聯邦採購之「無偏見原則」與透明度義務美國白宮管理與預算辦公室(Office of Management and Budget,以下簡稱OMB)在2025年12月11日發布M-26-04備忘錄(以下簡稱本指引),目標是落實第14319號行政命令「防止聯邦政府中的覺醒AI」(Preventing Woke AI in the Federal Government)。本指引闡述「追求真相」(Truth-seeking)、「意識型態中立」(Ideological Neutrality)兩大「無偏見AI原則」(Unbiased AI Principles),並強制要求聯邦機構在採購大型語言模型(LLM)時,必須將此二原則納入合約條款。 為確保符合規定,本指引要求聯邦機構在進行採購時,應避免強制供應商揭露過於敏感的技術資料(如模型權重),而是採取以下兩層級的資訊揭露架構: 1. 基本透明度要求(Minimum Threshold for LLM Transparency) 各機構於招標階段,應要求供應商提供以下資訊: (1) 可接受的使用政策:界定產品適當與不適當用途的文件。 (2) 模型、系統和/或資料的摘要卡(Model, System, and/or Data Cards):包含訓練摘要、風險緩解措施及基準測試評分。 (3) 終端用戶資源與意見回饋機制:包含用戶教程及針對違反無偏見原則產出的回報管道。 2. 強化透明度門檻(Threshold for Enhanced LLM Transparency) 若機構擬將模型整合至其他軟體或服務中,則需獲取更深入的開發與運作資訊,例如: 1. 預訓練和後訓練(Pre-Training and Post-Training):如影響產出事實性(factuality)的活動、系統提示詞(System Prompts)、以及內容審查過濾器的具體運作。 2. 模型評估:針對政治議題的偏見測試結果與方法論。 3. 模型中嵌入的企業控制(Enterprise-Level Controls): 如可客製化的系統指令或來源引用功能。 4. 第三方對模型的修改:非原廠開發者所施加的額外控制層。 本指引對聯邦行政機構具有行政拘束力。機構必須於2026年3月11日前更新採購政策,並將上述要求納入新舊合約中。值得注意的是,本指引引入了「實質性要求」(Materiality Requirement),即若供應商拒絕針對違反無偏見原則的產出採取糾正措施,將構成合約違約之重要事由,機構得據此終止合約。 觀察美國OMB此次發布的內容,係透過將「意識形態中立」轉化為具體的採購合規要件,OMB利用聯邦政府龐大的購買力,在採購合約中確立供應商的「透明度義務」,OMB指引不僅建立了明確的法遵標竿,更可能發揮示範效應,將政府端的無偏見規範逐步推廣至私營部門,轉化為產業的最佳實踐標準。
日本數位廳發布資料治理指引,協助企業運用資料提升企業價值日本數位廳發布資料治理指引,協助企業運用資料提升企業價值 資訊工業策進會科技法律研究所 2025年09月05日 隨著AI迅速普及已成為不可逆轉的趨勢,經濟與社會產生重大變革,手機、家電及各種智慧裝置大量蒐集資料,似已成為維持經濟與社會運作不可或缺的重要要素,在國際上已出現如歐洲共同資料空間(Common European Data Space)等先進的資料運用案例,日本亦開始推動企業跨領域資料運用,藉此提升企業生產力與附加價值[1]。 壹、事件摘要 日本數位廳(デジタル庁)於2025年6月20日發布資料治理指引(データガバナンス・ガイドライン),以企業經營者為適用對象,歸納總結資料治理之必要性、應採取之做法,與實踐治理過程中應留意之要點,協助企業推動數位轉型,發揮資料最大效用,持續提升企業價值,並進一步實現超智慧社會[2](Society 5.0)願景[3]。 貳、指引重點 本指引歸納總結實踐資料治理的四大支柱,概述如下: 一、設計符合跨境傳輸資料實際狀況之業務流程 資料共享與協作的主要目的是推動數位轉型與提升企業價值,因此,運用跨境資料時,需要調查當地國家或地區法規,釐清國際規範,並預測後續法規動向,克服法規限制。為評估運用跨境資料之潛在風險,則須透過如顧問公司、諮詢公司等第三方外部機構進行調查與監控,採取適當風險因應措施。為明確責任,須事先與資料共享之利害關係人,將瑕疵擔保責任透過契約與相關規定明文化。在修改業務流程時,亦須與相關組織及利害關係人共享資訊,確保資料在生命週期中的可追溯性[4]。 二、確保資料安全(データセキュリティ) 以資料生命週期為基礎,掌握運用跨境資料可能產生之風險,並依照相關組織與利害關係人值得信賴之程度,進行風險分析制定因應策略。針對業務流程中取得的資料,應限制在資料產生者允許之範圍內,始得進行運用,以維護資料使用正當性。此外,亦須特別留意資料完整性,確保資料來源值得信賴且未受到偽冒,以及資料內容未遭到竄改或洩漏[5]。 三、提升資料成熟度(データマチュリティ) 制定並推動可提升資料成熟度[6]之方針,持續改善流程,將資料價值最大化,並將風險最小化,提升企業綜合能力。資料長(Chief Data Officer, CDO)須發揮領導能力,建立能迅速因應變化的體制,明確各組織相關負責人與其角色,並推動具備資料相關技能之人才培育招聘計畫。資料長亦須分析導入如AI等先進技術之費用效益,向經營者提出建議。除了公司自身狀況會影響資料成熟度外,亦可能受到資料共享與協作之利害關係人的資料成熟度水準影響。因此,公司亦須將採取之具體措施與相關資訊分享予利害關係人,並向社會公開公司目前資料成熟度水準,持續強化企業與利害關係人及社會之間的相互信賴程度[7]。 四、制定並定期檢討AI等先進技術運用行動方針 為使AI等先進技術發揮最大力量,並降低對社會與個人可能造成的負面影響,企業應參考經濟產業省(経済産業省)於2025年3月28日發布之AI業者指引第1.1版[8](AI事業者ガイドライン第1.1版),並考量個人資料保護、機敏資料保護、透明度、可問責等重要因素,針對涉及資料運用的各種實務運用場景,由CDO主導制定運用AI等先進技術運用行動方針(AIなどの先端技術の利活用に関する行動指針),並適時檢討持續改善內容[9]。 參、事件評析 當資料留存在企業內部未被有效運用時,不僅會成為企業和產業發展之阻礙,也將導致社會整體效率低落。本指引歸納總結實踐資料治理的四大支柱。為達成協助企業運用資料推動數位轉型,提升企業價值之目標,除了需要企業管理階層主導,亦須獲得公司內部與利害關係人之理解與支持。企業應積極與其他企業、組織和機構進行資料共享與協作,積極參與資料治理,提高產品與服務價值及企業聲譽,進而促進社會永續性發展[10]。 隨著國際上已出現先進資料運用案例,我國亦須關注資料運用國際趨勢推動創新發展,日本推動企業跨領域運用資料之做法,亦可為我國未來實踐資料治理提供借鏡。 [1]〈データガバナンス・ガイドライン〉,デジタル庁,頁2-3,https://www.digital.go.jp/assets/contents/node/information/field_ref_resources/71bf19c2-f804-488e-ab32-e7a044dcac58/b1757d6f/20250620_news_data-governance-guideline_01.pdf (最後瀏覽日:2025/09/02)。 [2]〈Society 5.0〉,内閣府,https://www8.cao.go.jp/cstp/society5_0/index.html (最後瀏覽日:2025/09/02)。 [3]前揭註1。 [4]同前註,頁13。 [5]同前註,頁15-16。 [6]資料成熟度係指企業根據其戰略或經營需求,有效運用資料的能力。可參閱同前註,頁5。 [7]同前註,頁18-19。 [8]〈AI事業者ガイドライン〉,経済産業省,https://www.meti.go.jp/shingikai/mono_info_service/ai_shakai_jisso/20240419_report.html (最後瀏覽日:2025/09/02)。 [9]前揭註1,頁20-23。 [10]同前註,頁24-25。
美國聯邦準備理事會、FDIC與OCC發布聯合聲明,提醒關於加密資產流動性風險有鑑於加密資產(crypto-asset)投資交易潛在風險與市場波動性,美國聯邦準備理事會(Federal Reserve Board)、聯邦存款保險公司(Federal Deposit Insurance Corporation, FDIC)與通貨監理局(Office of the Comptroller of the Currency, OCC)於2023年2月23日發布聯合聲明,提出加密資產增加銀行流動性風險情境,例如穩定幣因市場狀況之變動,導致銀行擠兌使大量存款流出,由於存款流入和流出的規模與時間的不可預測性,加密資產相關資金恐造成流動性風險提高,提醒銀行機構應用現有的風險管理原則審慎因應。 依據聲明內容,有效風險管理作法包括:(1)了解加密資產相關實體存款潛在行為的直接和間接驅動因素,以及這些存款易受不可預測波動影響的程度;(2)銀行機構應積極監控加密資產資金來源存在的流動性風險,並建立有效的風險管理控制措施;(3)應與加密資產存款相關的流動性風險納入應變計劃(contingency funding planning),例如流動性壓力測試;(4)評估加密資產相關實體存款之間關聯性。該聲明並強調銀行機構應建立風險管理機制及維持適當有效之內部控制制度,以因應加密資產高流動性風險,確保經濟金融穩健發展。