歐盟執委會於2020年2月19日發表《人工智慧白皮書》(White Paper On Artificial Intelligence-A European approach to excellence and trust)指出未來將以「監管」與「投資」兩者並重,促進人工智慧之應用並同時解決該項技術帶來之風險。
在投資方面,白皮書提及歐洲需要大幅提高人工智慧研究和創新領域之投資,目標是未來10年中,每年在歐盟吸引超過200億歐元關於人工智慧技術研發和應用資金;並透過頂尖大學和高等教育機構吸引最優秀的教授和科學家,並在人工智慧領域提供世界領先的教育課程。
而在監管方面,白皮書提到將以2019年4月發布之《可信賴之人工智慧倫理準則》所提出之七項關鍵要求為基礎,未來將制定明確之歐洲監管框架。在監管框架下,應包括下列幾個重點:1.有效實施與執行現有歐盟和國家法規,例如現行法規有關責任歸屬之規範可能需要進一步釐清;2.釐清現行歐盟法規之限制,例如現行歐盟產品安全法規原則上不適用於「服務」或是是否涵蓋獨立運作之軟體(stand-alone software)有待釐清;3.應可更改人工智慧系統之功能,人工智慧技術需要頻繁更新軟體,針對此類風險,應制定可針對此類產品在生命週期內修改功能之規範;4.有效分配不同利害關係者間之責任,目前產品責任偏向生產者負責,而未來可能須由非生產者共同分配責任;5.掌握人工智慧帶來的新興風險,並因應風險所帶來之變化。同時,白皮書也提出高風險人工智慧應用程式的判斷標準與監管重點,認為未來應根據風險來進行不同程度之監管。執委會並透過網站向公眾徵求針對《人工智慧白皮書》所提出建議之諮詢意見,截止日期為2020年5月19日。
美國及歐盟於2021年6月在美歐峰會達成共識,宣布成立美歐貿易和技術委員會(EU-US Trade and Technology Council, TCC),並於2021年9月29日首次在美國匹茲堡舉辦會議,由歐盟執委會、美國國務卿、美國商務部及貿易代表共同主持,討論歐美未來在貿易與技術合作空間。 TTC目標是擴大並深化貿易與跨大西洋投資關係,更新21世紀國際經貿規則。美歐間在全球最大共同民主價值觀和經濟關係的基礎上,確保貿易和技術政策能為雙方人民提供優惠及服務。 其中關於美歐未來在貿易與技術合作的具體執行事項,則交由TTC組成共十個工作小組以應對一系列的全球貿易、經濟和技術議題,包括:技術標準合作、供應鏈安全、氣候和綠色技術、ICT安全和競爭力、資料治理和技術平台、威脅安全和人權的技術濫用、出口管制、投資審查、全球貿易挑戰以及中小企業取得和利用數位技術。透過TTC能使美歐兩國政府與利害關係者進行密集且持續的接觸,確保TTC合作計畫的成果能促進雙方經濟高度成長。 此外,TTC合作與交流不影響雙方各自監管自主性,並應尊重雙方不同法律制度。TTC合作同時也應關注包括WTO等多邊機構協調及與理念相近夥伴間之合作,以促進數位及經濟治理之民主與永續典範。
固網業者路權取得相關問題之研究 金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
Skype多了測謊功能?以色列BATM公司研發出Skype整合性軟體-KishKish,未來將提供消費者以付費的方式使用測謊功能。此軟體係透過分析談話者聲音中的緊張程度,告知軟體使用者「對方是否說謊」。如此一來,使用者便可透過軟體分析出來的指示,而即時修正詢問的問題。據說,美軍已開始運用此套軟體! 雖然KishKish的使用如此便利,但是根據英國專家表示,網路使用者若不當使用KishKish,將可能違反「資料保護法」(Data Protection Act)而負擔民事責任,甚至還可能涉及「調查權規範法」(Regulation of Investigatory Powers Act,RIPA)將被處以兩年以上有期徒刑或科以罰金。 至今,Skype仍尚未公布其價格及發布日期。