德國新營業秘密保護法(The new German Trade Secrets Act, TSA)其中一個亮點即為:除非有明確契約或其他法規要求,逆向工程是合法的,其規範於該法第3條第1款,德國以往舊法(不正競爭防止法)並未特別明文,我國營業秘密法亦同。現今企業應盡快透過調整契約內容、保密政策或保密技術來防止該類法所「允許」之情形發生[1],以避免供應鏈間之風險。德國法律專家提出有關「制定合作契約」建議供參:
[1]Dr. Henrik Holzapfel,New german law on the protection of trade secrets, https://www.mwe.com/insights/new-german-law-protection-trade-secrets/ (last visisted Sep.25,2019).
為確保各會員國能有效執行歐盟科研架構計畫(Horizon 2020),歐盟執委會每年針對各會員國整體創新能力及研發活動進行評估,據此研提創新競爭力排名,並定期公布歐盟創新計分板報告(European Innovation Scoreboard, EIS)。而觀諸最新公布2016歐盟創新計分板報告((European Innovation Scoreboard 2016),可歸納以下三項要點: (一) 2016歐盟創新研發能力成長趨緩 由於研發資金政策之限制以及英國脫歐影響下,相較於去年(2015)歐盟創新計分板報告(European Innovation Scoreboard 2015, EIS)之統計,今年度(2016)歐盟整體之創新研發能力成長趨緩。 (二) 2016創新研發先驅仍為瑞典,部分國家仍有大幅度之成長 而今年之歐盟創新計分板報告在整體創新競爭力排名上,第一名仍為瑞典,其次則為丹麥,芬蘭,德國和荷蘭。而相較於去年之排名,拉脫維亞、馬爾他、立陶宛、荷蘭等國家則有顯著之成長。 (三) 在個別指標項目中,會員國創新表現亦有不同 此外,獨立創新指標項目中,各會員國亦有不同之創新表現,例如:在「創新人力資源」及「學術研究項目」中,由瑞典榮獲最具競爭力之國家;而在「創新財政環境」項目中第一名為芬蘭;「創新私人投資」、「創新網絡」及「中小企業創新」等三大項目中,則分別由德國、比利時及愛爾蘭奪冠。
德國禁種MON810爭議,行政法院裁定有理由,支持主管機關禁種決定跨國農業生技公司Monsanto研發的MON810品系抗蟲基因改造玉米,於今(2009)年4月中旬遭到德國農業生技的主管機關-聯邦營養、農業與消費者保護局(Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, BMELV)援引歐盟基因改造生物環境釋出指令(EU-Freisetzungsrichtlinie)中的防衛條款,加以禁種。 雖然Monsanto隨即對BMELV此項決定提出行政訴訟,但Braunschweig行政法院在5月初作出的暫時性裁定,支持了BMELV此項決定。法院基於兩大理由,裁定BMELV之禁種決定並非無據:(1)只要有新的或進一步的資訊出現,支持基因改造作物可能會對人體或動物健康造成損害,即可支持主管機關作出禁止種植已經取得歐盟上市許可的基因改造作物之決定之論據,不需要存在有必然會有風險的科學知識。(2)據此論據進行風險調查及風險評估,乃主管機關之執掌,主管機關對此有裁量權(Beurteilungsspielraum),從而,法院介入審查該行政決定的重點,在於主管機關是否已為充分的風險調查、有無恣意論斷風險。本案目前尚非終局之決定,Monsanto仍可對於此項裁定提出抗告。 在歐盟,基因改造生物的上市需透過歐盟程序為之,一旦歐盟執委會允許某一基因改造生物的上市,該基因改造生物原則上即可在全體歐盟會員國推廣銷售,包括種植。唯歐盟環境釋出指令例外容許會員國得於一定條件下,援引防衛條款主張已通過歐盟審查的基因改造生物,對於其境內環境或人體與動植物健康有負面影響,從而禁止特定已取得歐盟上市許可的基因改造生物於其境內流通。防衛條款的動用屬例外情形,且須定期接受歐盟層級的審查。
日本規制改革推進會議促進農業數據利用日本政府規制改革推進會議係由內閣府發布政令所成立,具跨部會協調性質、推動日本法規調適之委員會,規制改革推進會議於今(2020)年7月2日向安倍晉三首相報告,從去年10月起歷經8個月審議規制改革項目的審議結果後,最新版「規制改革實施計畫」於7月17日通過閣議決定。規制改革實施計畫中關於農林水產領域「促進智慧農業普及」項目,除了促進無人機、自動行走機普及、農作物栽培設施設立而調和相關規定外,「農業數據利活用」項目首見於規制改革實施計畫,實施項目包括以下四項: 利用農林水產省補助金(見註1)導入曳引機、農業機器人、無人機、IoT機器等智慧農業機械時,應符合以下要件:根據農業領域AI數據相關契約指引,農民可以使用其所提供給系統服務業者所保管之數據,該契約條文應包含於數據契約中。 農林水產省與農機廠商合作建構OPEN API數據環境,透過使用農機時所取得位置座標、作業紀錄等數據,未來農民可以將此數據使用於非出自該農機廠商的其他軟體。 農林水產省於2022年度預算開始,利用補助金導入農機廠商的農機時,須符合上述第2點OPEN API要求。 農林水產省將發出以下明確通知:因鳥獸害、緊急救難、搜索犯人、農業道路塌陷等應配合公家機關等具高度公共性事務,以及為保護人的生命身體財產等必要之情況,農機廠商如事前已徵得農民的概括性同意,可提供從農民方所取得之數據予有關當局。 日本政府為加速智慧農業落地普及,藉由調和農林水產省補助金規定促進農業數據流通運用,保護農民數據使用權利,且將農業數據擴散利用於公共事務,凸顯日本政府對於農業數據保護與運用的重視,值得我國做為借鏡。 註1:補助金不限於「有關補助金等預算執行適正化相關法律[昭和 30 年法律第 179 號]」(補助金等に係る予算の執行の適正化に関する法律[昭和 30 年法律第 179 号])的補助金,包括其他交付金、委託費。 「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
美國平等就業機會委員會發布「評估就業篩選程序中使用軟體、演算法及AI之不利影響」技術輔助文件美國平等就業機會委員會(Equal Employment Opportunity Commission, EEOC)於2023年5月18日發布「根據 1964 年《民權法》第七章評估就業篩選程序中使用軟體、演算法和AI之不利影響」(Assessing Adverse Impact in Software, Algorithms, and Artificial Intelligence Used in Employment Selection Procedures Under Title VII of the Civil Rights Act of 1964)之技術輔助文件(下簡稱「技術輔助文件」),以防止雇主使用自動化系統(automated systems)對求職者及員工做出歧視決定。 該技術輔助文件為EEOC於2021年推動「AI與演算法公平倡議」(Artificial Intelligence and Algorithmic Fairness Initiative)計畫的成果之一,旨在確保招募或其他就業決策軟體符合民權法要求,並根據EEOC 1978年公布之「受僱人篩選程序統一指引」(Uniform Guidelines on Employee Selection Procedures, UGESP),說明雇主將自動化系統納入就業決策所應注意事項。 當雇主對求職者與員工做出是否僱用、晉升、終止僱傭,或採取類似行動之決定,是透過演算法決策工具(algorithmic decision-making tool),對特定種族、膚色、宗教、性別、國籍或特定特徵組合(如亞洲女性),做出篩選並產生不利影響時,除非雇主能證明該決策與職位工作內容有關並符合業務需求,且無其他替代方案,否則此決策將違反《民權法》第七章規定。 針對如何評估不利影響,雇主得依UGESP「五分之四法則」(four-fifths rule),初步判斷演算法決策工具是否對某些族群產生顯著較低的篩選率。惟EEOC提醒五分之四法則推導出之篩選率差異較高時,仍有可能導致不利影響,雇主應依個案考量,使用實務常見的「統計顯著性」(statistical significance)等方法進一步判斷。 其次,當演算法決策工具係由外部供應商所開發,或由雇主授權管理人管理時,雇主不得以信賴供應商或管理人陳述為由規避《民權法》第七章,其仍應為供應商開發與管理人管理演算法決策工具所產生之歧視結果負責。 最後,EEOC鼓勵雇主應對演算法決策工具進行持續性自我評估,若發現該工具將產生不利影響,雇主得採取措施以減少不利影響或選擇不同工具,以避免違反《民權法》第七章。