日本因新冠肺炎而將修正著作權法關於線上教學之著作利用部分提前施行

  日本著作權法在2018年修正時,在第35條針對教育相關資通訊(利用網路進行線上教學與傳送預複習資料)之權利對應規定進行增修。修正前,利用人在每次利用時,均需獲得個別權利人之同意並支付授權金;而修正後,僅需一站式的支付補償金即可,無須得到權利人之許可。

  然而本條規定原訂於2021年4月施行,但因為新冠肺炎疫情蔓延影響,許多學校、教學機構因停課而使得線上教學之需求提高。日本文化廳為防止感染並考量停課措施有可能長期化,宣布將文學作品、論文及新聞記事等作為線上教學教材,自本月開始無須得著作權人之許可即可使用,亦即將修正施行日期大幅提前。

  而作為日本著作權人補償金分配窗口之「教學目的公眾放送補償金管理協會」,也在今年(2020年)4月6日決定本年度相關作品之補償金以特例無償之方式處理。依據上開規定,本年度的線上教學,不論是文學或是音樂等作品,均無須取得著作權人之同意,即可免費使用。

相關連結
相關附件
※ 日本因新冠肺炎而將修正著作權法關於線上教學之著作利用部分提前施行, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8432&no=55&tp=1 (最後瀏覽日:2026/02/03)
引註此篇文章
你可能還會想看
日本簽署SBOM國際共通指引,強化軟體弱點管理,全面提升國家網路安全

由美國網路安全暨基礎設施安全局(Cybersecurity and Infrastructure Security Agency, 簡稱CISA)自2024年以來,持續主導並規劃《SBOM網路安全之共同願景》(A Shared Vision of Software Bill of Materials(SBOM) for Cybersecurity)之指引訂定,作為保障網路安全之國際共通指引。於2025年9月3日,由日本內閣官房網路安全統括室為首,偕同經濟產業省共同代表日本簽署了該份指引,包含日本在內,尚有美國、德國、法國、義大利、荷蘭、加拿大、澳洲、紐西蘭、印度、新加坡、韓國、波蘭、捷克、斯洛伐克等共計15個國家的網路安全部門,皆同步完成簽署。以下為指引之重點內容: 1. 軟體物料清單的定位(Software Bill of Materials, 簡稱SBOM) SBOM於軟體建構上,包含元件內容資訊與供應鏈關係等相關資訊的正式紀錄。 2. 導入SBOM的優點 (1) 提升管理軟體弱點之效率。 (2) 協助供應鏈風險管理(提供選用安全的軟體,提升供應商與使用者之間溝通效率)。 (3) 協助改善軟體開發之進程。 (4) 提升管理授權軟體之效率。 3. SBOM對於利害關係人之影響 (1) 使軟體開發人員可選擇最符合需求的軟體元件,並針對弱點做出適當處置。 (2) 軟體資訊的透明化,可供採購人員依風險評估決定是否採購。 (3) 若發現軟體有新的弱點,使軟體營運商更易於特定軟體與掌握弱點、漏洞。 (4) 使政府部門於採購流程中,發現與因應影響國家安全的潛在風險。 4. SBOM適用原則與相關告知義務 確保軟體開發商、製造商供應鏈的資訊透明,適用符合安全性設計(Security by Design)之資安要求,以及須承擔SBOM相關告知義務。 近年來軟體物料清單(SBOM),已逐漸成為軟體開發人員與使用者,於管理軟體弱點上的最佳解決方案。然而,針對SBOM的作法與要求程度,各先進國家大不相同,因此透過國際共通指引的簽署,各國對於SBOM的要求與效益終於有了新的共識。指引內容不僅建議軟體開發商、製造商宜於設計階段採用安全設計,以確保所有類型的資通訊產品(特別是軟體)之使用安全,也鼓勵製造商為每項軟體產品建立SBOM並進行管理,包含軟體版本控制與資料更新,指引更強調SBOM必須整合組織現有的開發與管理工具(例如漏洞管理工具、資產管理工具等)以發揮價值。此份指引可作為我國未來之參考借鏡,訂定相關的軟體物料清單之適用標準,提升政府部門以及產業供應鏈之網路安全。

英國資訊委員辦公室推出資料分析工具箱協助組織檢視資料保護情形

  英國資訊委員辦公室(Information Commissioner's Office, ICO)於今(2021)年2月17日推出資料分析工具箱(data analytics toolkit)供所有考慮對個人資料進行資料分析的組織使用,旨在幫助組織駕馭人工智慧(Artificial Intelligence, AI)系統對個人權利所可能帶來的挑戰。   ICO表示,越來越多的組織使用AI來完成特定任務,例如使用軟體自動發現資料集(data sets)的模式,並藉此進行預測(predictions)、分類(classifications)或風險評分(risk scores),組織在使用個人資料進行資料分析時,納入資料保護的概念是至關重要的,除符合法律要求外,也能增強民眾對技術的信任與信心。   使用ICO的資料分析工具箱時,首先會詢問組織所適用的法律,並引導至相對應的頁面,並透過合法性(lawfulness)、問責與治理(accountability and governance)、資料保護原則(data protection principles)以及資料主體權利(data subject rights)等一系列的問題瞭解組織的資料保護情形,在回答所有問題之後,工具箱將產生一份報告,提供組織關於資料保護的建議,提高組織資料保護的法令遵循程度。   ICO強調,組織應該要在個人資料處理的過程中考量報告中所提及的建議,並向組織的資料保護長(Data Protection Officer, DPO)徵詢其意見,在組織委託、設計與實施資料分析時落實個人權利與自由的保障。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

歐盟提出能源安全政策,因應能源短缺及危機問題

  歐盟執委會(European Commission)在2014年5月28日提出源安全政策,此係歐洲針對各個會員國的能源依賴程度進行調查後所提出之政策。 歐洲多數國家對於能源需求有超過50%仰賴進口,且近來烏克蘭與俄羅斯政治紛爭引起許多的關注,尤其在天然氣使用部分,多半從俄羅斯透過管線運送方式進口,因此可能產生的能源短缺危機不容忽視。為此,歐盟再次針對能源使用的安全性問題提出政策方針。   政策訂定之目標可分為八項,分別為短期、中期及長期三個階段,每階段皆應採取具體執行措施,以因應能源安全問題: 強化能力,克服2014年及2015年冬天將面臨的能源短缺問題。 加強緊急應變措施,包括風險評估、偶發事件計畫以及維持既有的公共設施。 減緩能源的需求 建構具良好功能與全面整合的內部市場 增加歐盟地區的能源產出 進一步發展能源科技 使提供能源的來源國家以及相關公共設施多樣化 促進國家間能源政策的合作,並和外部交流。   其中,具體的措施包括執委會利用能源安全壓力測試(energy security stress test)模擬仿冬天天然氣供應短缺的問題,採用逆流(reverse flows)輸送、使用化石燃料替代能源、增加可提供出口能源的國家,不再侷限俄羅斯、阿爾及利亞、利比亞以及挪威國家等等。   此項政策後續的相關計畫內容已於6月26日及27日由歐盟由各國代表出席歐盟執委會會議討論,其是否能解決歐洲能源短缺問題,作為其他國家之參考借鏡,值得觀察。

TOP