歐盟《歐洲資料戰略》

  歐盟執委會針對未來10年歐洲AI開發與開放資料運用方向等核心議題,於2020年2月19日公布一系列數位化政策提案,其中之一即為提出歐洲資料戰略(European Data Strategy)。本戰略提出資料開放共享政策與法制調適框架,宣示其目標為建構歐洲的資料單一市場(single market for data),視資料為數位轉型的核心,開放至今尚未被使用的資料。歐盟期待商界、研究者與公共部門等社群的公民、企業和組織,得透過跨域資料的蒐集與分析,改善決策的作成基礎或提升公共服務品質,為醫療或經濟等領域帶來額外利益,同時促進歐盟推動人工智慧發展及應用。

  本戰略揭示了資料單一市場的建構框架,包含資料必須能在歐盟內與跨域流通並使所有人受益、全面遵守如個資保護、消費者保護與競爭法等歐盟相關規範、以及資料取用(access)和使用的規定,應平等實用且明確,並以之建立資料治理機制;同時,為在技術面強化歐洲數位空間之能力,以完善資料共享所需之資料基礎設施,應創建歐洲資料庫(European data pools),預備將來進行巨量資料分析與機器學習。在上述框架下,本戰略同時擬定了數個具體的措施與制度調修方向如下:(1)建構資料跨部門治理與取用之法規調適框架:包括於2020年第4季提出歐洲共同資料空間管理之立法框架,於2021年第1季提出高價值資料集(high-value data-sets),評估於2021年提出資料法(Data Act)以建構企業對政府或企業間的資料共享環境、調適並建立有利於資料取用之智慧財產權與營業秘密保護框架;(2)強化歐洲管理、處理資料之能力與資料互通性:建構資料共享體系結構並建立共享之標準及治理機制、於2022年第4季啟動歐洲雲端服務市場並整合所有雲端服務產品、於2022年第2季編纂歐盟雲端監管規則手冊;(3)強化個人有關資料使用之權利:從協助個人行使其所產出資料相關權利之角度,可能於資料法中優化歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第20條之資料可攜權,如訂定智慧家電或穿戴裝置之資料可讀性格式;(4)建構戰略領域與公共利益領域之歐盟資料空間:針對戰略性經濟領域與攸關公共利益的資料使用需求,開發符合個資保護與資安法令標準之資料空間,主要用於保存製造業、智慧交通、健康、財務、能源、農業、公共管理等領域之資料。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 歐盟《歐洲資料戰略》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8433&no=55&tp=5 (最後瀏覽日:2025/12/24)
引註此篇文章
你可能還會想看
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見

  美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。   依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。   依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。   此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。   最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。

德國聯邦網絡管理局將於四月拍賣800 MHz等頻譜供4G使用

  德國聯邦網絡管理局(Bundesnetzagentur,BNetzA其職權類似目前我國之交通部)將於2010年4月12日展開針對800 MHz、1.8 GHz、2 GHz及2.6 GHz四大頻段中的部分頻譜拍賣,以供電信服務無線網路接取之用─特別是供4G技術使用;惟競標者僅有既存的四大電信營運商:Deutsche Telekom、Vodafone、KPN’s E-Plus(該公司成立一百分百控股公司獨立參與投標) 以及Telefónica O2,並無新進業者投標,明顯欠缺多樣性(diversity)。 局長Matthias Kurth表示,曾收到兩家業者有意參與競標的訊息,但其中一家營運商並未符合相關投標資格,而無法參與拍賣;另一家則已表明退出競標拍賣程序。   前揭四大頻段原屬軍方或傳統廣播電視業者所使用,屬歐盟所謂之數位紅利(digital dividend)之頻段已清空待價而沽。其中最受矚目者乃電波物理特性極佳的800 MHz頻段,特別適合於4G通訊技術之用,能在偏遠地區與都會遮蔽密度高之地區展現良好的覆蓋率及滲透率。   歐美地區皆已陸續進行廣電數位化(DSO)及數位紅利頻譜拍賣或制訂相關使用規則,以提升無線網路接取的便利性與普及性,強化國內資通訊產業競爭力。惟德國電信產業似乎與我國目前情況類似,為既有電信營運商寡占頻譜使用及相關服務市場,與美國700 MHz拍賣結果大異其趣,商業價值是否亦為德國頻譜釋出之重要考量,後續發展頗值得注意。

美國法院擬修正《聯邦證據規則》以規範人工智慧生成內容之證據能力

2025年5月2日,聯邦司法會議證據規則諮詢委員會(Judicial Conference’s Advisory Committee on Evidence Rules)以8比1投票結果通過一項提案,擬修正《聯邦證據規則》(Federal Rules of Evidence,FRE),釐清人工智慧(AI)生成內容於訴訟程序中之證據能力,以因應生成式AI技術在法律實務應用上日益普遍的趨勢。 由於現行《聯邦證據規則》僅於第702條中針對人類專家證人所提供的證據設有相關規定,對於AI生成內容的證據能力尚無明確規範,所以為了因應AI技術發展帶來的新興挑戰,《聯邦證據規則》修正草案(下稱「修正草案」)擬新增第707條「機器生成證據」(Machine-Generated Evidence),並擴張第901條「驗證或識別證據」(Authenticating or Identifying Evidence)的適用範圍。 本次增訂第707條,針對AI生成內容作為證據時,明確其可靠性評估標準,以避免出現分析錯誤、不準確、偏見或缺乏可解釋性(Explainability)等問題,進而強化法院審理時的證據審查基礎。本條規定,AI生成內容作為證據必須符合以下條件: 1. 該AI生成內容對於事實之認定具有實質助益; 2. AI系統於產出該內容時,係以充分且適當之事實或資料為輸入依據; 3. 該輸出結果能忠實反映其所依據之原理與方法,並證明此一應用於特定情境中具有可靠性。 本修正草案此次新增「AI生成內容」也必須合乎既有的證據驗證要件。原第901條a項原規定:「為符合證據之驗證或識別要求,提出證據者必須提供足以支持該證據確係其所聲稱之內容的佐證資料。」而修正草案擬於第901條b項新增「AI生成內容」一類,意即明文要求提出AI生成內容作為證據者,須提出足夠證據,以證明該內容具有真實性與可信度,方符合第901條a項驗證要件。 隨著AI於美國法院審理程序中的應用日益廣泛,如何在引入生成式AI的同時,於司法創新與證據可靠性之間取得平衡,將成為未來美國司法實務及法制發展中的重要課題,值得我國審慎觀察並參酌因應,作為制度調整與政策設計的參考。

簡析WTO綠色能源管制爭端案例

TOP