美國眾議院議員Mark Takano於2019年10月2日提出「刑事鑑識演算法草案」 (Justice in Forensic Algorithms Act),以建立美國鑑識演算法標準。依據該法第2條,美國國家標準與技術研究所(National Institute of Standard)必須建立電算鑑識軟體之發展與使用標準,且該標準應包含以下內容:
一、以種族、社會經濟地位、兩性與其他人口特徵為基礎之評估標準,以因應使用或發展電算鑑識軟體,所造成區別待遇產生之潛在衝擊。
二、該標準應解決:(1)電算鑑識軟體所依據之科學原則與應用之方法論,且於具備特定方法之案例上,是否有足夠之研究基礎支持該方法之有效性,以及團隊進行哪些研究以驗證該方法;(2)要求對軟體之測試,包含軟體之測試環境、測試方法、測試資料與測試統計結果,例如正確性、精確性、可重複性、敏感性與健全性。
三、電算鑑識軟體開發者對於該軟體之對外公開說明文件,內容包含軟體功能、研發過程、訓練資料來源、內部測試方法與結果。
四、要求使用電算鑑識軟體之實驗室或其他機構應對其進行驗證,包含具體顯示於哪個實驗室與哪種狀況下進行驗證。此外,亦應要求列於公開報告內之相關資訊,且於軟體更新後亦應持續進行驗證。
五、要求執法機關於起訴書或相關起訴文件上應詳列使用電算鑑識軟體之相關結果。
本文為「經濟部產業技術司科技專案成果」
英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
促進頻譜使用效率--美國啟動獎勵拍賣機制為了滿足行動寬頻時代對於無線頻譜的需求,美國規劃了多種不同的頻譜釋出、分享或共用的政策,以增加可用的頻寬或提高使用效率,其中針對既有的數位無線電視服務所使用的頻譜,則提出「獎勵拍賣機制(incentive auctions)」。此機制最初於2010年由FCC提出,其特色在於具備自願性及市場導向兩項內涵。本次美國啟動獎勵拍賣機制,主要目的為藉由新業務之頻譜拍賣,將所得之部分標金作為誘因,以鼓勵廣播電視業者繳回原有頻譜使用權,並促進美國寬頻計畫(National Broadband Plan)之發展。目前針對此機制,美國國會已於2012年2月22日正式授權FCC執行。而FCC則於2012年10月2日發布FCC 12-118法規制定建議通知(Notice of proposed rulemaking, NPRM),並依據美國「2012年中產階級稅收減免及創造就業法案」(Middle Class Tax Relief and Job Creation Act of 2012)之授權,針對廣播電視頻譜獎勵拍賣機制進行商擬,並廣徵各界建議。 本次廣播電視頻譜獎勵拍賣機制主要可區分為三個步驟,(一)反向拍賣(reverse auction),指廣播電視業者藉由投標之方式,標得原持有頻段之自動放棄權。(二)頻譜重組(reorganization or repacking),此步驟是為了讓廣播電視頻譜藉由重組後,可釋出部分的超高頻(UHF)頻段以作為其他業務使用。(三)正向拍賣(forward auction),即針對頻譜進行重新授權,對此FCC提出將以更為彈性的概念使用頻譜。 目前整體拍賣機制尚處發展階段,各步驟內部運作應如何規劃,FCC仍積極尋求外界建議。不過從FCC所提出的五項關鍵政策目標(key policy goals)中,亦可歸納出未來整體機制的規劃方針包含(一)提升頻譜效能,期望未來得以5MHz為拍賣單位,並且支持各類無線行動技術如W-CDMA、HSPA以及LTE技術之發展、(二)確保不干擾鄰近國家頻譜之使用、(三)發展各頻段之通用性(interchangeable),促進各頻譜區段在重新配置後具備可替換性、(四)刺激頻譜回收達理想數量,以及(五)促進頻譜技術中立概念。面對美國在提升頻譜使用效率策略上又一記新嘗試,即便目前仍有許多不確定因素亟待突破,但就促進頻譜使用效率而言,亦不失為頻譜交易機制之外,另一可參考之方向。
美國《確保關鍵礦產安全可靠供應的聯邦戰略》《確保關鍵礦產安全可靠供應的聯邦戰略》(A Federal Strategy to Ensure Secure and Reliable Supplies of Critical Minerals),為美國商務部於2019年6月4日發布的一項國家層級礦產行動計劃,制定依據為美國總統於2017年12月20日發布的13817號行政命令,戰略目標是強化美國製造業與國防工業及礦產供應鏈彈性,推進研究開發工作,減少美國對中國大陸等外國實體的關鍵礦產資源依賴。 美國商務部表示,確保關鍵礦產供應穩定及供應鏈彈性,對於美國經濟繁榮與國防安全至關重要,過去美國過分依賴外國關鍵礦產資源及供應鏈,導致經濟和軍事出現戰略性弱點。據統計共有35種與美國經濟與國家安全相關的礦產品,包括鈾、鈦和稀土元素,為智慧手機、飛機、電腦和GPS導航系統及風力發動機、節能照明與混合動力汽車電池等綠色科技產品的必要組成。35種關鍵礦產中有31種選擇進口,其中更有14種關鍵礦產是完全依賴國外進口。 《確保關鍵礦產安全可靠供應的聯邦戰略》提出6項行動綱領包括:(1)推動關鍵礦產供應鏈的轉型研究、開發與部署;(2)加強美國關鍵礦產供應鏈和國防工業基地;(3)強化與關鍵礦產相關的國際貿易合作;(4)提升對國內關鍵礦產資源知識;(5)提升在美國聯邦土地上獲得關鍵礦產資源的機會,並簡化授權開採的審查程序;(6)增加美國關鍵礦產資源勞動力等。
加州立法機關提出2020年加州消費者隱私法修正案,擴大對未成年消費者個人資料之保護2024年1月29日,加州立法機關提出2020年加州消費者隱私法(California Consumer Privacy Act of 2020)之修正案,限制企業出售、分享、使用及揭露18歲以下消費者的個人資料。 2020年加州消費者隱私法旨在保護消費者之個人資料相關權利。依現行條文,企業向第三方出售、分享消費者個資前,應向消費者發出通知。而消費者有權拒絕出售、分享其個資,即便消費者曾經同意,亦有權隨時要求企業停止出售、分享行為。現行條文尚禁止企業在明知消費者未滿16歲的情況下,出售或分享消費者個資。除非年滿13歲消費者本人授權,或未滿13歲消費者父母授權,企業方可為之。 然該法修正案調整了前述條文,改為禁止企業在明知消費者未滿18歲的情況下,出售或分享消費者個資,除非企業取得年滿13歲消費者本人之授權,或取得13歲以下消費者父母之授權。 加州消費者隱私法修正案亦針對未成年人個資的使用與揭露增設限制。依現行條文,消費者有權限制企業只能在提供商品、服務的必要範圍內使用其敏感個資。若企業欲對敏感個資為原定目的外之使用或揭露、或敏感個資可能被用於或揭露予第三方,企業應向消費者發出通知。而消費者有權限制或拒絕企業之使用、揭露行為。而後該法修正案在同條增加未成年人個資使用、揭露相關規範,規範企業不得使用、揭露18歲以下消費者個資。除非年滿13歲消費者本人同意,或是未滿13歲消費者父母同意企業為之。 若修正案通過,再配合現行條文於行政執行(Administrative Enforcement)章節之處罰規定,將能有效擴大該法對未成年人的保護。該修正案亦以條文要求加州隱私保護局(California Privacy Protection Agency)在2025年7月1日前,廣泛徵求公眾意見並調整相應法規,以進一步實現該法目的。