近期,Netflix向Covid-19影視緊急救濟基金捐贈100萬英鎊,並由電影電視慈善機構與British Film Institute(BFI)的支持下進行管理,目的是向在英國各地因停產而直接影響之在職工人和自由職業者,提供緊急短期救濟。BFI和電影電視慈善機構本身並沒有直接將資金投入基金,而是希望觸發第三方的投資。目前,該基金會正制訂確切之資格標準及個人資助水平,針對從事製作,發行和展覽的人員開放救濟。
此次Netflix向Covid-19電影和電視緊急救援基金會及全球其他組織的捐款旨在為失業人員提供緊急救濟,其原創系列副總裁安妮·門薩表示:“我們很榮幸與BFI和電影電視慈善組織合作,為電視和電影製作中受災最重的工人提供支持。從電工到木匠,從髮型和化妝師到司機的英國工作人員一直對Netflix的成功至關重要,我們希望在現在這個艱難的時刻,給最需要支持的自由職業者提供幫助。”
面對來勢洶洶之Covid-19疫情,全世界之影視產業皆受到前所未有之調整,我國面對疫情,文化部亦已研擬短期抒困措施與中長期振興之因應方案,並研擬「藝文紓困及振興辦法(草案)」,就短期抒困方面,「藝文紓困補助」將補貼藝文事業、團體及個人之營運成本;長期振興部分則將藝文產業納入經濟部振興抵用劵之適用範圍可用於藝文展演、電影院等藝文消費。然目前我國文創產業之抒困措施仍以政府補貼為主,若為加速恢復產業運作,或許國內各藝文團體或協會亦可效仿英國BFI,自主建立振興與抒困機制,以利受重創之藝文從業人員維持生計。
由美國商會(the United States Chamber of Commerce)於2007年成立的全球智慧財產中心(Global Intellectual Property Center,以下簡稱GIPC)發布2017年國際智慧財產指數排名,前三名分別為美國、英國和德國,而泰國在45個經濟體中排名第40名,在滿分35分的評分中僅得到9.35分。指數的計算方式係基於專利、著作權、商標、營業秘密、執法、國際條約的批准和執行狀況等6個智財保護面向,共35個指標組成。 GIPC指出,泰國關鍵優勢在於具備商標、著作權和設計專利的基本註冊和保護制度,具備智財權執行的基本法律架構,配合新技術的發展試圖調整著作權的法規,改進部份海關防止仿冒的措施。而得分低的主要原因則為專利保護不足、數位著作權制度不完整、智財資產商業化的繁鎖程序和額外成本、仿冒猖獗和執法不力等。 泰國智慧財產局(the Department of Intellectual Property,以下簡稱DIP)局長表示美國商會未充分考慮泰國在智慧財產權發展方面的努力。泰國是按與貿易有關之智慧財產權協定(Agreement on Trade-Related Aspects of Intellectual Property Rights,以下簡稱TRIPS)的要求提供智財保護,然GIPC的部份指標較TRIPS的要求嚴格,導致泰國得分偏低;且指標評估者僅為美國商界人士,而非所有利害相關人。不過DIP也表示,儘管在推動泰國智慧財產權保護方面存在諸多困難,同時需要與包括衛生部、海關廳、財政部、國家警察總署、特安廳以及數位經濟和社會部等部門合作開展,DIP仍將繼續推動各項工作進展,努力提高泰國在國際智財指數的排名。 【本文同步刊登於TIPS網站(http://www.tips.org.tw)】
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
FCC對於頻譜管理與拍賣的法規修正美國聯那通訊委員會 (Federal Communications Commission, FCC)在本月十四日公佈了一份有關「商業頻譜加強法案(Commercial Spectrum Enhancement Act, CSEA)」的執行命令與法規預訂修正通知(Declaratory Ruling and Notice of Proposed Rule Making)。希冀能制訂一定的行政規則而確切地遵照CSEA的規範;同時,FCC也在文件報告中也提出了一些對於目前競價拍賣規則的相關修正意見。 最初在 CSEA法案中設計了頻譜的拍賣收益機制,主要係補償聯邦機構在一些特定頻率(216-220 MHz, 1432-1435 MHz, 1710-1755 MHz, and 2385-2390 MHz)中,以及一些從聯邦專屬使用區重新定頻到非專用區的頻率,因移頻所支應出的必要成本。而在FCC的公佈報告中,委員會認為惟有定義清楚,方能有效地落實該法的執行。因此FCC詳細解釋說明了CSEA中對於「總體現金收益(total cash proceeds)」的意義,FCC認為所謂的總體現金收益應該是原始獲標的價格扣除掉任何有可能的折扣或扣損;同時,FCC也在預定修正公告中,認為應改變委員會的拍賣價格規定以配合CSEA的規定。另外,也修正了部落地的拍賣信用補償制度(Tribal Land Bidding Credit Rule)等規定。
截圖也違法,日本著作權法擬擴大違法下載之態樣日本文化廳文化審議會著作權分科會於2018年2月13日,出具分科會報告書,內容說明著作權法修正之方向。書中提及「重新檢視並修正違法下載之態樣」一點,擬將違法下載之態樣及動作,由「影音」擴及到所有靜態圖文(如漫畫、照片、小說、雜誌及論文等),「下載」擴及「截圖」(スクショ,screenshot)。 此次修法,起因於近來日本大量出現線上盜版漫畫網站,推估其半年所造成之損失可達4000億日幣以上。該報告書公布後,隨即湧現大量反對之聲浪。反對者認為修法之弊大於利,日本漫畫學會對此發表反對聲明,會長竹宮惠子對於修法表示憂心,認為修法將導致以下問題: 阻礙創作研究(如二次創作); 創作萎縮(日常下載及剪輯將被禁止); 難以判斷網路靜態圖文是否為違法上傳; 即使「下載」違法化,仍然無法根除線上盜版漫畫流通平台。 報告書中亦提及,在個人部落格及需加入會員之社群網(SNS)上傳或下載未經著作權人同意而公開之著作,亦屬違法。倘若為全書掃描上傳等惡性重大之行為,應科以刑責。 針對上述疑慮,報告書中的確未排除修法後將造成著作物在網路上利用萎縮之可能,然仍強調應透過官民間之合作努力,傳達正確之修法内容。並由出版社端導入「ABJ Mark」,推動正版漫畫流通平台,透過科技推動盜版網頁近用警示制度,使大眾知悉其行為即將侵害著作權等。由於法令修正之内容,影響人民日常生活甚鉅,後續修法將在各團體間如何折衝,上述措施能否普及或啟發人民觀念,值得後續持續關注。