愛爾蘭資料保護委員會(Ireland's Data Protection Commission)於今(2020)年2月公布控制者資料安全指引(Guidance for Controllers on Data Security),愛爾蘭資料保護委員會表示本指引亦適用於資料處理者。指引內針對17個面向說明控制者於資料處理時應考量之安全措施,分別為:(1)資料蒐集與留存政策(Data Collection and Retention Policies);(2)存取控制(Access Controls);(3)螢幕保護程式(Automatic Screen Savers);(4)加密(Encryption);(5)防毒軟體(Anti-Virus Software);(6)防火牆(Firewalls)(7)程式修補更新(Software Patching);(8)遠端存取(Remote Access);(9)無線網路(Wireless Networks);(10)可攜式設備(Portable Devices);(11)檔案日誌及軌跡紀錄(Logs and Audit Trails);(12)備份系統(Back-Up Systems);(13)事故應變計畫(Incident Response Plans);(14)設備汰除(Disposal of Equipment);(15)實體安全(Physical Security);(16)人為因素(The Human Factor);(17)認證(Certification)。
此外,愛爾蘭資料保護委員會還強調,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)第25條與第32條有關資料控制者之義務,可透過「從設計與預設機制著手資料保護(Data protection by design and by default)」,與適當的技術及組織措施等方式,並考量現有技術、執行成本、處理之本質、範圍、脈絡及目的與對當事人權利及自由之風險可能性與嚴重性等因素,以確保其安全措施符合相應資料風險之安全等級。
最後,愛爾蘭資料保護委員會表示資料控制者更應確保其組織內員工瞭解該等安全措施並確實遵守,資料控制者應於制定其資料安全政策時考量到本指引所列各項目,以履行其保護資料安全之義務。
鑑於ISP對於寬頻服務的廣告速度常與實際提供速度有落差,英國廣告標準管理局(Advertising Standards Authority,ASA)要求廣告事務委員會(Committee for Advertising Practice,CAP)與廣播廣告事務委員會(Broadcast Committee for Advertising Practice,BCAP)針對英國各地區的ISP寬頻廣告進行審查,CAP與BCAP則委託Ofcom進行各ISP實際寬頻服務速度之調查。 Ofcom於2010年11月~12月期間,針對ADSL、Cable及光纖等寬頻服務進行各時段的大規模測試。綜合以往的調查,Ofcom研究結果發現,英國寬頻服務平均速度約從 5.2 Mbps(2010年5月)至6.2 Mbps的(2010年11~12月),但不到廣告所宣稱速度之一半(平均寬頻廣告速度為 13.8 Mbps,故僅約45%。) 在各種寬頻技術中,ADSL的廣告與實際落差最大,廣告宣稱8Mbps之速度,實際平均僅有2~5Mbps;而Cable的廣告與實際落差最小,實際速度均能達到廣告速度的90%左右;光纖寬頻則約在80%~90%之間。 Ofcom並建議將以下原則增訂至英國寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds)中 • 如果寬頻速度是廣告內容,必須包括一個「典型的速度範圍」(Typical Speed Range,TSR),計算依據為將某一速度之使用者依照實際接取速度分為四等級,去掉最高與最低,取中間50%使用者之平均速度為準; • TSR必須至少與宣稱之速度相當; • 宣稱的速度必須代表相當大比例使用者能夠接受的實際速度; • 任何TSR或宣稱之速度在用於廣告時,必須是基於足夠的分析統計數據,而該數據與方法應經過審議。 Ofcom認為ISP的寬頻廣告應反映消費者能接受之實際速度,因此改變廣告規範是必要的,以促使各ISP進行以速度為基礎之競爭,並確保消費者有充分資訊可比較、選擇最有效率之寬頻服務。
美國國家標準技術局(NIST)更新電子簽章標準美國國家標準技術局(National Institute of Standards and Technology, NIST)於近日(2013年7月)更新電子簽章的技術標準「FIPS (Federal Information Processing Standard) 186-4數位簽章標準」,並經商務部部長核可。NIST於1994年首次提出電子簽章標準,旨在提供工具可資促進數位時代的信賴性,後續也隨著技術進步與革新,而有多次修訂。此次修訂,主要是調合該標準,使之與NIST其他加密相關指引(如金鑰加密標準)一致,以避免將來可能產生的矛盾。 此次增訂,亦明列出三種可保護資料的簽章產製與確認技術:數位簽章演算法(Digital Signature Algorithm, DSA)、橢圓曲線簽章演算法(Elliptic Curve Digital Signature Algorithm, ECDSA)、以及RSA公眾金鑰演算法(Rivest-Shamir-Adleman Algorithm, RSA)。 其他修訂的部分,還包括語彙的明晰化,以及降低對於隨機號碼產生器的利用限制…等。
日本內閣所屬智慧財產戰略本部公布〈智慧財產推進計畫2021〉日本於2021年7月13日公布〈智慧財產推進計畫2021〉。〈智慧財產推進計畫〉為智慧財產戰略本部自2003年開始,每年持續修訂至今的行動計畫。今年最新公布的〈智慧財產推進計畫2021〉,指出日本企業在智財.無形資產的投資活動相較於其他國家有嚴重停滯之現狀,並提出今後智財戰略的7項重點施政: 促進智財、無形資產的投資及運用:藉由企業揭露自身的經營戰略,吸引投資者關注智財並投資,藉此建立智財交易環境。 推動「運用標準戰略」:數位化使產業結構改變,從傳統金字塔型價值鏈轉為以功能連結的階層模式;此轉變讓標準戰略成為建立市場競爭優勢不可或缺的手段。 建立促進數據活用的環境:例如制定跨領域合作的數據流通基礎方針,或是創建數位交易市場,將數據交易的價值可視化,藉此吸引投資。 建立著作權集中許可制度:為解決數位化所產生的權利處理成本問題,需建立可以快速處理龐大且多樣化的著作權集中許可制度。 強化智財權在初創或中小企業、農業領域的運用:例如提供企業智財布局的諮詢窗口、建立農業技術的商業機密保護制度。 強化支援智財運用的體制、營運和人才基礎:例如商標審查效率強化、實現各級學校智財教育的普及。 重建COOLJAPAN戰略:因應疫情後的社會變化,追加建立數位技術的運用,以確保COOLJAPAN戰略持續發展。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
日本文化廳發布《人工智慧著作權檢核清單和指引》日本文化廳發布《人工智慧著作權檢核清單和指引》 資訊工業策進會科技法律研究所 2024年08月21日 日本文化廳為降低生成式人工智慧所產生的著作權風險,保護和行使著作權人權利,於2024年7月31日以文化廳3月發布的《人工智慧與著作權的思考》、內閣府5月發布的《人工智慧時代知識產權研究小組中期報告》,以及總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的資料為基礎,制訂發布《人工智慧著作權檢核清單和指引》[1]。 壹、事件摘要 日本文化廳的《人工智慧著作權檢核清單和指引》主要分成兩部分,第一部分是「人工智慧開發、提供和使用清單」,依循總務省和經濟產業省4月份發布的《人工智慧事業指引(1.0版)》的區分方式,分為「AI開發者」、「AI提供者」、「AI(業務)使用者(事業利用人)」和「業務外利用者(一般利用人)」四個利害關係人,依不同的身份分別說明如何降低人工智慧開發前後的資料處理和學習等智慧財產權侵權風險的措施,以及提供和使用人工智慧系統和服務時,安全、適當地使用人工智慧的技術訣竅。 第二部分則是針對著作權人及依著作權法享有權利的其他權利人(例如表演人)的權益保護,從權利人的思考角度,建議正確理解生成式AI可能會出現什麼樣的(著作權)法律上利用行為[2]。其次,說明近似侵權的判斷要件、要件的證明、防止與賠償等可主張的法律上請求、可向誰主張侵權、權利主張的限制;於事先或發現後可採取的防止人工智慧侵權學習的可能措施;最後對侵權因應建議權利人可發出著作權侵權警告、進行訴訟、調解等糾紛解決,並提供可用的法律諮詢窗口資訊。 貳、重點說明 日本文化廳於此指引中,針對不同的角色提出生成式AI與著作權之間的關係,除更具體的對「AI開發者」、「AI提供者」、「AI(事業與一般利用人)」,提醒其應注意的侵權風險樣態、可能的合法使用範圍,並提供如何降低風險的對策。同時,從權利人角度提供如何保護權益的指引,並提供可用的法律諮詢窗口資訊。重點說明如下: 一、不符合「非享受目的」的非法AI訓練 日本著作權法第30條之4規定適用於以收集人工智慧學習資料等為目的而進行的著作權作品的複製,無需獲得權利人的授權,但是,該指引特別明確指出「為了輸出AI學習資料中包含的既有作品的內容,而進行額外學習;為讓AI產出學習資料庫中所包含的既有作品的創作表現;對特定創作者的少量著作權作品進行額外個別學習」,這三個情況係同時存有「享受」著作目的,不適用無須授權的規定[3]。 二、不能「不當損害著作權人利益」 從已經採取的措施和過去的銷售紀錄可以推斷,資料庫著作權作品計劃有償作為人工智慧學習的資料集。在這種情況下,未經授權以人工智慧學習為目的進行複製時,屬於「不當損害著作權人利益」的要求,將不適用(日本)著作權法第30條之4規定[4]。在明知某個網站發布盜版或其他侵害著作權的情況下收集學習資料,則使用該學習資料開發的人工智慧也會造成著作權侵權,人工智慧開發者也可能被追究著作權責任[5]。不應使用以原樣輸出作為學習資料的著作權作品的學習方法,如果該已訓練模型處於高概率生成與學習資料中的著作物相似的生成結果的狀態等情況下,則該已訓練模型可能被評價為「學習資料中著作物的複製物」, 對銷毀該模型的請求即有可能會被同意[6]。 三、使用生成式AI即可能被認定為可能有接觸被侵害著作[7] 權利人不一定必須證明「生成所用生成AI的學習資料中包含權利人的作品。如有下述AI使用者認識到權利人的作品的情況之一,權利人亦可透過主張和證明符合「依賴性(依拠性)」要件,例如:AI使用者將現有的著作物本身輸入生成AI、輸入了現有著作物的題名(標題)或其他特定的固有名詞、AI生成物與現有著作物高度類似等。 四、開發與提供者也可能是侵權責任主體[8] 該指引指出,除利用人外,開發或提供者亦有負侵權責任的可能,特別是--人工智慧頻繁產生侵權結果,或已意識到人工智慧很有可能產生侵權結果,但沒有採取措施阻止。於其應負侵權責任時,可能被請求從訓練資料集中刪除現有的著作權作品,甚至是刪除造成侵權的人工智慧學習創建的訓練模型。即便人工智慧學習創建的訓練模型一般並非訓練資料的重製物,不過如果訓練後的模型處於產生與作為訓練資料的著作權作品相似的產品的機率很高的狀態,該指引認為可能會被同意[9]。 參、事件評析 人工智慧(AI)科技迎來契機,其生成內容隨著科技發展日新月異,時常可以看見民眾在網路上分享AI技術生成的圖像和影音。是否能將AI生成的圖案用在馬克杯或衣服販售,或是將Chat GPT內容當作補習班教材,均成為日常生活中的訓練AI的資料與運用AI的產出疑義。 各國固然就存有人類的「創造性貢獻」是人工智慧生成結果是否受著作權法保護、可受著作權保護的條件,單純機械性的AI自動生成,基本上欠缺「人的創造性」,非著作權保護對象,已有明確的共識。如何以明確的法令規範降低AI開發過程的侵權風險或處理成本?賦予AI訓練合法使用既有著作,應有的界限?衡平(賦予)既有著作的著作權人權益?AI服務提供者應負那些共通義務?是否合理課予AI服務提供者應負之侵權損害責任?AI使用者之侵權責任是否須推定符合「接觸」要件?等等諸此進一步的疑義,則仍在各國討論、形成共識中。 而從日本文化廳的《人工智慧著作權檢核清單和指引》,我們可以清楚的看出,在樹立成為AI大國的國家發展政策下,其著作權法雖已賦予AI訓練資料合法的重製,但在指引是明列已屬「享受」目的訓練行為、不合理損害著作權利用的情況、明示開發服務者應負的揭露義務與可能承擔侵權責任,彰顯其對權利人權益平衡保護的努力。值得於我國將來推動落實AI基本法草案中維護著作權人權益原則時,做為完善相關法令機制的重要參考。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1] 文化庁著作権課,「AI著作権チェックリスト&ガイダンス」,令和6年7月31日,https://www.bunka.go.jp/seisaku/bunkashingikai/chosakuken/seisaku/r06_02/pdf/94089701_05.pdf,最後閱覽日:2024/08/20。 [2] 詳見前註,頁31。 [3] 詳見前註,頁7。 [4] 詳見前註,頁8。 [5] 詳見前註,頁9。 [6] 詳見前註,頁9。 [7] 詳見前註,頁35。 [8] 詳見前註,頁36。 [9] 詳見前註,頁42。