美國白宮科學與技術政策辦公室(The White House’s Office of Science and Technology Policy , OSTP)於2020年1月9日發布「人工智慧應用管制指引」(Guidance for Regulation of Artificial Intelligence Application),為美國政府機關起草人工智慧規範並進行管制時提供指引,該指引內要求各機關之規範應遵循以下10項人工智慧原則:
一.公眾對AI之信任:政府對AI之管制或其他措施應促進AI之可靠性、健全性,且於應用上應具備可信性。
二.公共參與:政府應提供機會讓利害關係人參與AI管制規範立法程序。
三.科學實證與資訊品質:科學實證與資訊品質:政府機關發展AI之相關技術資訊,應透過公開且可驗證之方式提供給大眾參考,以提高大眾對AI之信任與協助政策制定。
四.風險分析與管理:應採取以風險為基礎之分析評估方法,確認哪些風險係可接受之風險,或那些風險代表無法接受之損害或所失利易大於預期利益。
五.利益與成本:政府於擬定相關規範時,應小心評估AI對於整體社會之利益,與預期外之效果。
六.彈性:法規應持續滾動檢視與調修以因應AI之創新應用。
七.公平且無歧視:政府應針對AI之應用與決策,考量公平與無歧視相關議題。
八.揭露與透明:透明度與揭露程序之建立可提升公眾對AI應用之信任。
九.安全:政府應特別注意AI系統內所儲存或傳輸資訊之安全與相關安全維護控制措施。
十.跨機關合作:政府各部會或機構間應相互合作與分享經驗,以確保AI相關政策之一致性與可預測性。
本文為「經濟部產業技術司科技專案成果」
「專利蟑螂」( Patent Troll)由個人或是中小型組織/團體以購買專利的方式來獲得專利權,並藉由專利權排他性特徵,以訴訟方式來控告侵害其專利權的成功商品製造者。 「專利蟑螂」主要特徵有三;(1)主要係藉由專利取得的方式,向潛在或可能的專利侵權者收取費用;(2)此類NPE並不進行任何研發活動,其亦不就其所擁有的專利來從事商品化活動或發展新型技術;(30此類NPE投機性地等待商品製造者在投入不可回復之鉅額投資後,始對該商品製造者行使專利侵權主張。 然而,一般對於NPE對專利制度以及專利市場之影響,會以Patent Troll之行為模式作為觀察起點,例如,有論者認為專利蟑螂所從事購買與再行出售專利的行為,可以增進專利交易市場的效率化。同時,該行為不僅讓弱勢的專利創作者享有因其創作所產生的財務收益外,其亦發揮了同於仲介者(dealers)或是市場創造者(market-makers)功能的專利金融性市場 。亦有論者認為,專利蟑螂的行為已經帶來經濟上的危害(economic harm),因其慣於同時向不同公司索取適度的(moderate)專利授權費用。而為了避免陷入風險極高且耗費甚鉅的專利侵權訴訟,被索取專利授權費用之公司皆傾向給付專利蟑螂一定額度的專利授權金,以免除陷入不確定專利訴訟的泥皁。同時,專利蟑螂亦傾向選擇目標公司(target companies)最脆弱的時點,例如:新產品的發表、宣傳費用的投入等,再對其提出專利侵權訴訟,使其被迫必須遵循專利蟑螂的要求來擺脫可能陷入專利侵權訴訟的羈絆。
有效開放:西進40%上限有條件鬆綁積極管理機制出爐後,行政院正在研議規劃有效開放政策,包括投資大陸 40 %上限鬆綁事宜,但尚未形成決策時間表。 40 %上限究竟如何鬆綁,政府高層高度關切,據悉,政府已委託財經智庫提供一份兩岸經貿對策建議白皮書,擬作為政府兩岸政策建議及六月召開台灣經濟永續成長會議決策參考,智庫建議應視個別企業、個別產業個案檢視放寬,對大陸投資利益必須大於不良負作用。 財經智庫建議以七大配套指標決定 40 %上限的鬆綁,七大指標包括:一、產業無法在台生產,也無法擴大中國以外的市場生產,應予放寬;二、在中國市場屬於領先地位,且可繼續擴大市場;三、在中國獲利可匯回台灣回饋股東;四、企業領先全球,必須對中國擴大投資以繼續取得全球領先地位。五、該企業在台有很大營運及研發中心,即以台灣為根;六、該企業有重大技術及品牌成就,可去大陸市場攻城掠地;七、外資持股比例高且公司治理的守法紀錄良好者。 一旦 40 %可有條件鬆綁,相關官員表示,將考慮對特定回台上市台商研擬放寬其股市上市條件,籌資再投資大陸的上限也可視為外資放寬。政府希望企業可以去大陸攻城掠地,但不希望把大陸當成唯一生產基地,企業把生產及上中下游關聯性產業一起帶走,甚至移出研發,例如筆記型電腦,對台灣造成失業等諸多不利負作用,因此台灣必須保留生產基地,生產高附加價值產品。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
法商Parrot商標侵權及商業秘密洩漏案對外商於中國大陸規範人員管理的啟發