英國為救受Covid-19影響之小型企業成立簡易辦理之復興貸款計畫

  新冠病毒業務中斷貸款計畫(CORONAVIRUS BUSINESS INTERRUPTION LOAN SCHEME,CBILS)係因應疫情於3月23日由隸屬於英國政府之英國商業銀行(British Business Bank為推動中小型企業發展之政策性銀行)所提供八成信用擔保的中小型企業紓困貸款計畫,但承辦銀行授信緩慢或不願承貸,導致成效不彰飽受批評。

  英國商業銀行正視小型企業具規模小、缺少抵押物、信用不足、營業資訊不透明及缺乏與銀行間的往來紀錄之特徵,易有不易通過授信徵審,難以獲得融資紓困之問題。業於5月4日另行啟動復興貸款計畫(BOUNCE BACK LOAN SCHEME,BBLS),小型企業只需於受理該計畫之承貸銀行網站填寫1份簡易申請表,輸入公司名稱、地址、公司註冊編號、2019年之預估年營業額與銀行代碼跟帳號,即可申請承貸金額為2,000英鎊以上,最高至企業營業額之25%(上限為50,000英鎊)之六年期之小規模貸款,該貸款提供十成擔保,銀行無需進行授信評估,亦不得要求小型企業進行任何其他形式之個人擔保,BBLS開放至今僅一週,申請件數已高於CBILS。

  我國中央銀行之小規模營業人簡易申貸方案以十成信用提供小額貸款,與BBLS相似,惟我國小規模營業人簡易申貸方案採取簡易評分表進行審核,評分表內仍就負責人個人信用及不動產擔保設定進行分數評比,與英國無須進行授信評估頗有差異,雖我國受疫情影響程度未如英國嚴重,但小規模營業人仍受有衝擊,兩國之小額貸款同為十成擔保,我國或可參酌英國授信放寬之作業,提供小規模營業人更寬一點、快一點、方便一點的活水挹注,使小規模營業人度過疫情難關及加速復甦。

相關連結
※ 英國為救受Covid-19影響之小型企業成立簡易辦理之復興貸款計畫, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8454&no=55&tp=1 (最後瀏覽日:2025/12/10)
引註此篇文章
你可能還會想看
美國推動L Prize獎勵創新節能照明產品技術研發

  美國能源部依據「2007年能源獨立與安全法案」(The Energy Independence and Security Act (EISA) of 2007)第655條規定,設立Bright Tomorrow Lighting Prize (L Prize)競賽,這是第一個由美國政府所發起的科技競賽。此一規定係依據「2005年能源政策法」(Energy Policy Act of 2005)第1008條而來,賦予能源部對於與其政策目的相關、有重大貢獻的科技研發或商業應用,得設置競賽活動並提供獎金。因此,為了促進照明產業的發展,而固態照明(solid-state lighting)科技是具有潛力能減少照明能源的使用以達解決氣候變遷的方式之一,因此能源部希望在固態照明技術的研發上扮演催化者的角色,藉由此一競賽來刺激研發超效能固態照明產品以取代傳統照明設備。   此一規定對工業的發展造成挑戰,因為將會取代兩種日常生活所使用的產品:60W白熾燈泡與PAR 38滷素燈泡。於2008年5月首先展開的是60W白熾燈泡領域,因為此種燈泡是消費者最普遍使用的,約佔美國國內白熾燈泡市場的一半。要獲得此獎項的要求,必須該替代產品要能使用低於10W的電力,節省83%的能源。該競賽已於2011年8月結束,由Philips Lighting North America所研發的高效能LED產品獲得,除頒發一千萬美元的獎金外,亦已與聯邦政府簽署採購合約。該產品預計於2012年春於零售商店上架。   L Prize的第二階段競賽於2012年3月展開,希望針對PAR 38滷素燈泡領域,鼓勵企業研發LED替代產品,來取代通常使用於零售商店或戶外安全照明的聚光燈和探照燈等傳統PAR 38滷素燈泡。此一競賽獎勵對於全美的照明產業是相當好的挑戰,不僅能研發出創新、具有高效能的產品,亦能提升美國製造業的競爭力。目前全美國約有九千萬個PAR 38滷素燈泡,若能以高效能燈泡取代,能源部預估每年可以節省約11terawatt-hours的電力,並可減少七百萬噸的碳排放。   要贏得L Prize的產品必須通過嚴格的測試,包括其性能、品質、壽命、價格及是否適合量產等。由於在PAR 38滷素燈泡領域,至少必須製造50%的LED燈泡,且所有的組裝都須在美國完成,因此同時亦提供相當多的工作機會。

智慧電表的陷阱

  美國及歐洲都開始引進附加通訊功能的電表(所謂智慧電表)。這一波動向也真正開始影響到日本。日本國內最大家的東京電力公司將於2010年10月開始進行智慧電表的實際驗證研究。   雖然至今只有關西電力公司與九州電力公司有引進智慧電表,但在10年之後,日本大半以上的電表會是智慧電表。   從短期來看,智慧電表就只具有使用電力的遠距抄表跟遠距截斷的功能。但是就只具有這樣的功能是不足以讓眾多目光聚焦的,它所具有的是期待在未來透過電表跟家電機器等所形成的資訊通信網絡。在目前許多企業打算就先透過網路蒐集使用電力的資訊,之後在提供新的附加服務。   這樣的動向不只是發生在電力公司,在瓦斯及自來水業界也正在發生。例如東京瓦斯公司將於2010年度起,開始實驗運作具有無限通訊功能的瓦斯表,快的話在2012年就會正式更換約1000萬台的瓦斯表。東京瓦斯公司還計畫在之後將用於瓦斯表上的通訊系統擴張到自來水表的抄表上。美國企業如IBM公司也積極投入自來水表的「智慧化」。   但是,在實際引進智慧電表時,美國發生了引進智慧電表的住戶的電費急速增加,產生了不少的訴訟,美國德州Oncor電力公司正面對這樣的訴訟,加州的PG&E公司的顧客也正聲請相關的訴訟。   專家們指出一些會影響電費增加的原因,其中就指出因為引進智慧電表使得「正確測量出電力使用量」這也是因為美國至今所使用的電表太過老舊,無法正確的測量出正確的電力使用量,以致用戶都在付出比實際使用量要少的電費。所以在引進智慧電表測量出正確的電力使用量之後,就產生出「電費增加」的錯覺。   現在美國的電力公司主要把智慧電表用於自動抄表上,這只是利用智慧電表的第一步。若在初始階段無法得到消費者的支持,之後要推廣則會更為困難。使用電力的相關資訊在某種意義上可視為是個人資料的其中一種。隱私權的問題等與消費者保護汲汲相關的議題陸續都會出現。   美國眾議員Edward Markey在眾議院提出了電力公司要將智慧電表所測量的電力使用資訊即時提供給消費者,並有保護該資訊隱私權義務化的法案。在技術面上,有關重視資訊安全的通訊型式的討論亦蓬勃發展起來。

日本公布《行動通信領域的基礎設施共享,於電信事業法及電波法的適用關係指引》

  隨著具有高速大容量特性的第五代行動通訊(5G)技術啟用,如何促使發射射頻(Radio frequency, RF)的基地臺能夠達到小型化及多點化的目標,將是未來重要的課題。但在地理空間限制、景觀影響與法規限制等因素下,除了增設基地臺外,也可考慮「基礎設施共享」(Infrastructure Sharing)的概念。   日本總務省於2018年12月28日公布《行動通訊領域的基礎設施共享-電信事業法及電波法的適用關係指引》(移動通信分野におけるインフラシェアリングに係る電気通信事業法及び電波法の適用関係に関するガイドライン)。   本指引主要從「利用基礎設施共享,推動行動通訊網絡整備」的觀點出發,首先定義「基礎設施共享事業」之範圍與型態,其將基礎設施分為兩類,一類為土地和建物、鐵塔等工作物、另一類為電信設備(如天線、增幅器、調變器)。接著說明基礎設施分享業者在使用上述兩類基礎設施時,於電信事業法及電波法之適用。具體內容包含欲經營該事業之必要程序、業者向行動通訊業者提供基礎設施時簽訂的契約類型、提供基礎設施的條件,最後說明若行動通訊業者、電信業者等各業者間,無法就欲共享的基礎設施使用權達成共識時,相關的爭議處理流程。本指引最後亦說明各業者在使用土地和建物、鐵塔等工作物,以及電信設備時的共通措施。

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

TOP