歐盟執委會(European Commission, EC)於2020年3月24日發表新聞稿,說明在COVID-19疫情期間,各國政府要求人民保持社交距離甚或自我隔離;人民無法會面互動下,數位政府政策成為維持正常生活的解套方式。歐盟於新聞稿中重申先前建構「歐盟內部市場電子交易之電子身分認證與信賴服務規則」(REGULATION EU No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC,以下簡稱 eIDAS)、電子識別(electronic identification, eID)以及發展信任服務(trust services)的必要性,例如電子戳記(eTimestamps)、電子圖章(eSeals)、電子簽章(eSignatures)、網站認證(Website authentication)等均屬之。歐盟公民無須離開住宅,即可和公部門互動。
除了公部門,信任服務可以支援歐盟企業(特別是疫情嚴重地區的中小型企業)遠端執行業務,維持業務連續性。例如金融服務對交易、認證、安全性及防洗錢等領域發展數位化:eID識別客戶身分、整合同一客戶的海外金融帳戶服務、遠端驗證防洗錢要求;電子簽章可與客戶遠端簽署金融服務契約;電子註冊交付服務(electronic registered delivery service)則作為安全交換重要文件或契約之機制。
在零售業而言,安全的電子交易對於線上業務尤為重要。例如eID可對購買酒類等管制商品或藝術品等高價商品之消費者進行更嚴格的身分檢查;電子簽章和電子戳記則強化文件及流程追蹤機制,降低追蹤成本。 在運輸部門,以汽車共享服務為例,eID可用於證明客戶的身份,提供安全登錄,並允許客戶進行遠端車輛解鎖。而貨運及物流產業,若在不同營運商運送之間遇有延遲,則電子戳記可使責任歸屬更加明確。另外,對重要文件使用電子圖章,可證明文件完整性、有效性並減少對紙本文件的依賴,並降低疫情期間會面之風險。
本文為「經濟部產業技術司科技專案成果」
美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年7月14日發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》(Postmarketing Studies and Clinical Trials: Determining Good Cause for Noncompliance with Section 505(o)(3)(E)(ii) of the Federal Food, Drug, and Cosmetic Act)指引草案,說明FDA如何判定處方藥廠商未遵守上市後要求(Postmarketing Requirements, PMRs)的正當理由。 根據聯邦食品、藥品和化妝品法案(Federal Food, Drug, and Cosmetic Act, FD&C Act)第505(o)(3)節,應完成PMR的廠商必須向FDA更新研究或臨床試驗進度的狀態及時間表,例如:提交最終版本計畫書、完成研究/臨床試驗、提交結案報告。廠商若未向FDA更新上述PMR資訊即違反FD&C Act,除非廠商提出正當理由。 未遵守PMR的正當理由應符合下列三項條件: 一、與錯失時程直接相關的情況。 二、超出廠商的控制範圍。 三、當初制定時間表時無法合理預期的情況。 該指引草案舉例說明可能的正當理由及非正當理由,另建議廠商提交年度報告前主動通報PMR進度的狀態,並在預期錯過時程之前儘快提供理由,亦須採取矯正PMR不合規行為的措施,包括立即制定矯正計畫、主動向FDA通報實際或預期的延誤,以及修訂合理的時間表。未遵守PMR的廠商可能會收到FDA的警告信(Warning Letter)或無標題信(Untitled Letter)、不當標示指控(Misbranding Charges)和民事罰款,FDA將根據廠商是否採取矯正措施來確定罰金。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」
美國國家公路交通安全管理局發布自駕車安全性評估相關法規預告美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2025年1月15日發布「配備自動駕駛系統車輛之安全、透明度及評估計畫」(The ADS-equipped Vehicle Safety, Transparency, and Evaluation Program , AV STEP)法規預告(Notice of proposed rulemaking, NPRM),建立全國性自願評估與監督制度,以提高自駕車安全性之公共透明度,並促進其負責任布建。 根據《國家交通與機動車輛安全法》(National Traffic and Motor Vehicle Safety Act),自駕車在符合〈聯邦機動車輛安全標準〉(Federal Motor Vehicle Safety Standards, FMVSS)及州、地方法律的前提下,得於公共道路上行駛;若無法符合FMVSS之要求,則需進行豁免申請。惟不論採何種途徑,FMVSS皆未針對自駕車之安全性與性能進行評估,因此NHTSA提出AV STEP,為自駕車設計專門之豁免申請途徑,並針對不同自動化程度車輛提出涵蓋車輛設計、開發與運行之安全性審查條件,以對現行FMVSS之豁免規定進行補充。簡要說明如下: (1)需配置駕駛人之自駕車:需具備手動駕駛功能與清晰的交接程序,以於自駕系統失效時透過充分提示與反應時間,使駕駛人接管操作。 (2)完全由自駕系統操作之自駕車:監管著重於各種情況下皆能自主運作、回退(Fallback)機制需具遠端監控能力,且能自動進入最小風險狀態。 除上述要求外,申請者皆須提供第三方機構之獨立評估報告、說明自動駕駛系統故障之應對措施,並持續接受NHTSA監督。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
奈米產業民間導引規範先行-以美國推動奈米保險機制及自願性計畫法制為例