歐盟執委會(European Commission, EC)於2020年3月24日發表新聞稿,說明在COVID-19疫情期間,各國政府要求人民保持社交距離甚或自我隔離;人民無法會面互動下,數位政府政策成為維持正常生活的解套方式。歐盟於新聞稿中重申先前建構「歐盟內部市場電子交易之電子身分認證與信賴服務規則」(REGULATION EU No 910/2014 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 23 July 2014 on electronic identification and trust services for electronic transactions in the internal market and repealing Directive 1999/93/EC,以下簡稱 eIDAS)、電子識別(electronic identification, eID)以及發展信任服務(trust services)的必要性,例如電子戳記(eTimestamps)、電子圖章(eSeals)、電子簽章(eSignatures)、網站認證(Website authentication)等均屬之。歐盟公民無須離開住宅,即可和公部門互動。
除了公部門,信任服務可以支援歐盟企業(特別是疫情嚴重地區的中小型企業)遠端執行業務,維持業務連續性。例如金融服務對交易、認證、安全性及防洗錢等領域發展數位化:eID識別客戶身分、整合同一客戶的海外金融帳戶服務、遠端驗證防洗錢要求;電子簽章可與客戶遠端簽署金融服務契約;電子註冊交付服務(electronic registered delivery service)則作為安全交換重要文件或契約之機制。
在零售業而言,安全的電子交易對於線上業務尤為重要。例如eID可對購買酒類等管制商品或藝術品等高價商品之消費者進行更嚴格的身分檢查;電子簽章和電子戳記則強化文件及流程追蹤機制,降低追蹤成本。 在運輸部門,以汽車共享服務為例,eID可用於證明客戶的身份,提供安全登錄,並允許客戶進行遠端車輛解鎖。而貨運及物流產業,若在不同營運商運送之間遇有延遲,則電子戳記可使責任歸屬更加明確。另外,對重要文件使用電子圖章,可證明文件完整性、有效性並減少對紙本文件的依賴,並降低疫情期間會面之風險。
本文為「經濟部產業技術司科技專案成果」
2018年9月12日,歐洲議會通過歐盟委員會於2016年制定的「單一數位市場著作權指令」,其中包含最具爭議的兩項條款: 第11條是有關「鏈接稅」(link tax)的條款。針對使用或匯集新聞文章片段的網站,未來恐需向源頭出版之新聞業者支付授權費用。例如若Twitter推文中包含來自Guardian文章的螢幕或文字摘要截取,則Guardian可以要求Twitter支付授權費用。 第13條則是有關「上傳過濾器」(upload filter)或稱「Memes禁令」(meme ban)的條款。為加重網路平台服務業者防止上傳者侵害著作權的監控責任,要求如Google和Facebook等業者,須使用強制內容過濾的軟體以清除違規行為,且須建立快速刪除機制,避免侵害著作權。 該指令在歐洲議會通過後,將進入歐盟委員會、歐盟理事會和歐洲議會之間的非正式談判。這三個組織將決定最終版本,約2018年12月提交給歐盟法律事務委員會,最後於2019年1月再回到歐洲議會進行投票。 歐盟指令本身雖不是法律,如何解釋立法也將取決於各國,惟透過本次歐洲議會的結果,可預見未來在歐洲市場,對於著作權人的保護與使用者的行為,將朝權利衡平的方向作調整。
合成資料(synthetic data)「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。 在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。 英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。 技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
美國最高法院在Bilski v. Kappos案中仍然留下對於商業模式的可專利性做下模糊的判決美國最高法院於2010年6月28日對Bilski v. Kappos案作出5比4的拉距判決。原告Bilski為一家能源產品公司,其就一種讓買家或賣家在能源產品價格波動時,可用來保護、防止損失或規避風險的方法申請商業方法專利(Business Method Patent)。但美國商標專利局審查人員以此發明只是一種解決數學問題,而為抽象而無實體呈現的想法為理由而拒絕。經該公司於專利上訴委員會上訴無效後,繼續上訴至聯邦巡迴法院與最高法院。 最高法院拒絕適用前審以美國專利法第101條(35 U.S.C. §101),創造發明是否為有用的、有形的及有體的結果作為認定方法專利的標準。而最高法院多數意見係採用「機械或轉換標準」(machine or transformation test)為專利法第101條可專利性之標準,認定如果創造發明的方法能與機械器具或配件相結合或轉換為另外一種物品或型態時,即認定此方法具可專利性。惟經法院適用此標準後,仍認定原告的商業方法不具可專利性。 一些批評認為,目前「方法」和「轉換」等關鍵字的定義還不清楚,而該判決並沒有澄清這些爭議,甚至帶來更多的疑惑。美國律師Steven J. Frank認為,雖然最高法院的意見放寬了可專利性的標準,但是並沒有提及認定可專利性的其他標準。 該判決亦未明確指出商業方法究竟要符合哪些實質要件,方具有可專利性。相當多的電子商務中所使用的「方法」都有專利,最有名的大概就是亞馬遜公司的「一鍵購買(one-click)」的網路訂購方法,還有Priceline公司「反向拍賣」(reverse auction)的方法等。許多電子商務、軟體及財務金融相關業者在這個判決之後,對於商業方法的可專利性也感到相當的困惑。如果有方法專利的存在,那麼擁有這些專利的公司就可以放心了;但是,如果方法沒有可專利性,那麼對於現在擁有方法專利的權利人不啻是一個很壞的消息。是否一些比較不抽象的方法就具有可專利性,而比較抽象的方法就專利性,判定的標準又在哪裡,對此,法院並沒有加以說明,在法院明訂出更明確的標準之前,目前仍留給美國商標專利局來判定。