歐洲資料保護委員會(European Data Protection Board, EDPD)於2020年4月24日公布COVID-19疫情期間使用位置資料和接觸追蹤工具指引文件(Guidelines 04/2020 on the use of location data and contact tracing tools in the context of the COVID-19 outbreak),就針對COVID-19疫情期間,歐盟成員國利用定位技術和接觸追蹤工具所引發的隱私問題提供相關指導。
EDPD強調,資料保護法規框架於設計時即具備一定彈性,因此,在控制疫情和限制基本人權與自由方面可取得衡平。在面對COVID-19疫情而需要處理個人資料時,應提升社會接受度,並確保有效實施個資保護措施。然而資料和技術雖可成為此次防疫重要的工具,但此次的資料利用鬆綁應僅限用於公共衛生措施。歐盟應指導成員國或相關機構,採取COVID-19相關應變措施時,若涉及處理個人資料,應遵守有效性、必要性、符合比例等原則。本次指引針對利用位置資料和接觸追蹤工具的特定兩種情況,闡明其利用條件和原則。情況一是使用位置資料建立病毒傳播模型,並進一步評估及研擬整體有效的限制措施;情況二是針對有接觸史病患進行追踪,目的是為通知確診病人或疑似個案以進行隔離,以便儘早切斷傳播鏈。
EDPB指出,GDPR和電子隱私保護指令(ePrivacy Directive)均有特別規定,允許各成員國及歐盟層級公共單位使用匿名及個人資料監控新冠病毒的傳播,並呼籲透過個人自願性安裝接觸追蹤工具。
本文為「經濟部產業技術司科技專案成果」
線上拍賣網站eBay以澳洲為實驗對象,實行強制澳洲消費者使用PayPal線上支付服務之政策,預估於2008年6月l7日開始,直接存款、個人支票與匯票將被排除於支付工具之外。此為eBay第一次採用限制支付的方式,預估未來也可能推行於其他的市場。消費者可使用PayPal、現金提貨或Visa與MasterCard金融卡之方式來付款,但均須藉由PayPal的系統來完成支付。PayPal允許消費者指定他們的信用卡、金融卡或銀行帳號為付款,而PayPal將向賣家收取每筆交易額度的1.1%與2.4%的費用。 澳大利亞競爭與消費者委員會(Australian Competition and Consumer Commission, ACCC)與新南威爾斯州公平貿易署(NSW Office of Fair Trading),對於eBay限制消費者的支付工具選擇權,均持反對意見。eBay面對外界的批評表示,若採銀行轉帳交易的型態,其引發爭議的可能性,係為PayPal交易的四倍,強制使用PayPal,將促使消費者至網站購物的動力,且保護消費者網路購物的安全。而且,eBay在澳洲實施的政策規定,將擴大對消費者的補償數額,即若消費者未收到商品,或是商品未符合於網站上的描述情況,則eBay將補償消費3仟至2萬澳元,此舉亦是保護消費者的權益。 目前,澳大利亞競爭與消費者委員會(ACCC)開始調查eBay的新政策,若有違法行為,將請eBay取消強制澳洲消費者使用PayPal線上支付服務的新政策。
歐盟科技策略新趨勢-生物經濟策略為引領歐盟各會員國邁向以生物發展為導向之經濟體時代,歐盟指委會(European Commission)乃於2012年2月13日通過歐盟永續生物經濟體策略計畫-Innovation for Sustainable Growth-a Bioeconomy for Europe,期待藉此引導歐盟邁想一個創新且低排放之永續發展經濟體。 隨著全球人口逐年增長,並預計於2050年邁向全球9億總人口數之關卡,但自然資源之相對有限,因此歐盟指委會認為歐盟經濟體需隨著時代變遷趨勢及早轉型,並且強化其發展永續性。為協助歐盟各會員國因應全球局勢變化,歐盟指委員進一步於其永續生物經濟體策略計畫中提出三大重點策略-1.強化創新,並發展新興科技,進而為生物經濟體做準備;2.建置並強化生物經濟體相關市場與競爭力;3.透過相關政策之研擬,加強立法者與產業間之聯結性。而除了透過前述之三大重點策略以做為發展生物經濟體之基礎外,歐盟指委會亦希望能藉由歐盟Horizon 2020計畫下之各相關配套措施,以及各項研發經費之投注,進行各項生物和綠色科技,如能源、奈米科技、和資通訊技術(ICT)等相關領域之創新研發,進而導引歐盟經濟體邁向一個全新永續新境界。 目前歐盟會員國如丹麥、芬蘭、德國、愛爾蘭、和荷蘭皆已提出相關生物經濟體策略,而國際間如加拿大、中國、美國、和南非對此議題,亦位處於發展中或是已發展階段。以生物科技為主之知識經濟發展導向乃為當前全球經濟發展趨勢,如何連結科技研發創新,進而發展永續經濟,實為一值得關注與思考之問題。
英國展開醫療器材監管公眾意見徵詢並公布《人工智慧軟體醫材改革計畫》英國藥物及保健產品管理局(Medicines and Healthcare Products Regulatory Agency, MHRA)於2021年9月16日展開期待已久的「英國醫療器材監管的未來」公眾意見徵詢(Consultation on the Future of Medical Devices Regulation in the United Kingdom),並公布「人工智慧軟體醫材改革計畫」(Software and AI as a Medical Device Change Programme)。英國欲從醫療器材上市前核准至其壽命結束進行監管改革,徹底改變一般醫療器材與人工智慧軟體醫療器材之監管方式。意見徵詢已於2021年11月25日結束,而該修正案預計於2023年7月生效,與英國針對醫療器材停止使用歐盟CE(Conformité Européenne, 歐洲合格認證)標誌並要求採用英國UKCA(UK Conformity Assessed, 英國合格評定)標誌的日期一致。 人工智慧軟體醫材改革計畫則包含十一個工作項目(work package,下稱WP),WP1與WP2分別為監管資格與監管分類,皆涉及監管範圍之劃定;WP3與WP4分別涉及軟體醫材上市前與上市後,如何確保其安全性與有效性的監管之研究;WP5針對軟體醫材之網路安全進行規範;WP6與WP7涉及加速創新軟體醫材審核上市之特別機制,分別為類似「創新藥品藥證審核與近用途徑」 (innovative licensing and access pathway)的機制,以及允許適時上市並持續研究監控風險的「氣閘分類規則」(airlock classification rule);WP8為確保智慧型手機之健康應用程式安全、有效與品質之規範研究;WP9~WP11則分別針對人工智慧軟體醫材之安全與有效性、可解釋性(interpretability)以及演進式(adaptive)人工智慧進行法規調適之研究。 MHRA預計透過指引、標準、流程之公布而非立法方式實現其監管此領域的目標。MHRA亦透露,針對上述工作項目,其已與重點國家和國際機構進行研究合作,已有不少進展即將公布。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。