美國專利及商標局(USPTO)因應COVID-19提出相關救濟措施

  今年全球受到新型冠狀病毒(下稱COVID-19)影響,許多產業遭受嚴重衝擊。美國政府於2020年3月27日頒佈「新冠病毒援助紓困經濟安全法(簡稱CARES)」,對此專利及商標局(USPTO)也針對受COVID-19影響之專利或商標申請案,給予延長申請期限、付款等寬限措施。

  由於寬限措施將於今年5月31日到期,USPTO認為COVID-19爆發的影響可視為37 CFR 1.183所指的特殊情況。因此,USPTO將允許專利權人通過EFS-Web或專利中心,提交符合某些條件之專利及商標救濟申請。

  商標救濟措施部分,因COVID-19影響商標審判與上訴委員會之訴訟,可提出延長或新時間之申請。其他未能即時對主管機關的訴訟提出答覆,致使放棄商標申請案,得提出恢復請求;未能於法定使用期限36個月內或維護申請截止日前申請,致使放棄商標申請或商標註冊被取消或期滿,得提出請願書。上述請願書中若附有COVID-19聲明,USPTO除免除相關費用,並可延續救濟措施至6月30日。

  專利救濟措施部分,針對小型和微型企業(small and micro entities)之專利申請提交期限,由原先6月1日延長至7月1日;大型企業(large entities)於5月31日後,依個案申請提供延期,包含請願書及所需費用;對於所有企業,USPTO將免除6月30日及先前因COVID-19影響所提出審查、請願書等費用收取。

相關連結
你可能會想參加
※ 美國專利及商標局(USPTO)因應COVID-19提出相關救濟措施, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8461&no=55&tp=1 (最後瀏覽日:2025/08/20)
引註此篇文章
你可能還會想看
FDA對於食品製程中應用奈米科技者發布產業指引草案

  FDA於今年(2012年)4月12日分別發布了兩項有關於評估應用奈米科技於化妝品及食物影響之產業指引草案(draft guidance)。其中就奈米科技應用於食品(以下簡稱奈米食品)之影響,FDA於「產業指引草案:評估包括使用新興科技在內之重要製程,改變對食品原料、與食品接觸物質及食品色素安全性及法規狀態之影響」(Draft Guidance for Industry: Assessing the Effects of Significant Manufacturing Process Changes, Including Emerging Technologies, on the Safety and Regulatory Status of Food Ingredients and Food Contact Substances, Including Food Ingredients that are Color Additives,以下簡稱新興科技衍生食品產業指引草案)中,對於食品製造商應採取哪些步驟以證明使用奈米科技之食品及食品包裝之安全性,有較為具體之說明。   於新興科技衍生食品產業指引草案中,明確表示奈米科技為此文件之涵蓋範圍,惟其聲明將奈米科技納入文件並不代表FDA認定所有內含奈米物質之產品皆屬有害,僅說明FDA認為依據奈米食品之特性,應進行特別的安全性評估以確保安全。文件中也強調,FDA對於食品製程中應用奈米科技所作之考量,與應用其他科技於食品製程者無異,並認為應用奈米科技所產出之最終產品,在原定用途之使用下,其特性及安全性與傳統製程產出者相同。   針對奈米食品之安全性評估,新興科技產業指引草案中指出,應就該食品所使用物質於奈米尺寸下之特性為其判斷基礎,而有可能必須進一步檢驗此等特性之影響,例如該物質對於生物可利用率及其於器官間運輸之影響等。此外,文件中亦提及FDA於過去針對食品添加物、色素及與食物接觸物質之化學及技術數據所作成之產業指引,於此應同樣被遵守,而將奈米食品所涉及與安全性相關之文件提供給主管機關。而FDA也將持續地向產業提供諮詢服務,以確保產品之安全性。   由FDA所發布之相關產業指引觀察,縱使FDA仍秉持美國對於奈米科技不具危害性之基本立場,其仍透過強化安全評估之科學工具及方法,以審慎之態度來取得大眾對於此類產品安全之信任。

美國FDA為因應藥品汙染事故公告四項製藥新指導原則

  美國食品藥物管理局(the United States Food and Drug Administration,以下簡稱FDA)於2015年2月13日公告四項與藥品製造有關之指導原則(guidance)作為補充相關政策執行之依據,主要涉及藥品製程中,藥品安全不良事件回報機制、尚未經許可之生技產品的處理模式、藥品重新包裝,以及自願登記制度中外包設施之認定應進行的程序與要求。   該四項指導原則係源於FDA依據2013年立法通過之藥物品質與安全法(The Drug Quality and Security Act,以下簡稱DQSA)所制定之最新指導原則。因2012年位於麻州的新英格蘭藥物化合中心(The New England Compounding Center),生產類固醇注射藥劑卻遭到汙染,爆發致命的黴菌腦膜炎傳染事故,故美國國會制定DQSA,以避免相同事故再次發生。DQSA要求建立自願登記制度(system of voluntary registration),倘若製藥廠自願同意FDA之監督,成為所謂的外包設施(outsourcing facilities)。作為回饋,FDA即可建議特定醫院向該製藥廠購買藥品。   而本次四項指導原則之內容,其一主要涉及外包設施進行藥物安全不良事件回報之相關規定,要求製藥廠必須回報所有無法預見且嚴重的藥物安全不良事件。在不良事件報告中必須呈現四項資訊,其中包括患者、不良事件首名發現者、所述可疑藥物以及不良事件的類型。同時,禁止藥品在上市時將這些不良事件標示為潛在副作用。第二份指導原則對於尚未經許可的生技產品,規定可進行混合,稀釋或重新包裝之方法;並排除適用某些類型的產品,如細胞療法和疫苗等。第三份指導原則涉及重新包裝之規定,內容包括包裝地點以及如何進行產品的重新包裝、監督、銷售和分發等其他相關事項。而第四份指導原則規範那些類型之藥品製造實體應登記為外包設施。為此,FDA亦指出聯邦食品藥物和化妝品法(the Federal Food Drug & Cosmetic Act)之規定裡,已經要求製造商從事無菌藥品生產時,必須將法規針對外包設施之要求一併納入考量。

瑞士聯邦委員會發布報告推進以數位自決權創建可信賴資料空間

  瑞士聯邦委員會於2022年3月30日,發布了一份關於推進可信的「資料空間」(Data Spaces)與「數位自決權」(Digital Self-Determination)報告。此份報告旨在強調資料是數位時代下創造價值的基礎,為了更好地運用資料的潛在價值,呼籲各界採用新的資料使用概念,加強資料所有者(Data Owner)或資料控管者(Data Controller)對於資料的控制,以「數位自決權」為核心,透過科學技術與法律制度,進一步為實踐「資料共享」(Data Sharing)提供一個安全、便捷、自主、開放、公平而值得信賴的「資料空間」。   值得注意的是,透過該報告,聯邦委員會指示聯邦外交部(FDFA)與聯邦環境、運輸、能源和通訊部(DETEC)實施多項措施,以期能在2023年6月份之前,制定一部由所有利害關係人參與的可信賴資料空間操作之自願行為準則。   此外,該報告列舉出當下對於充分發揮資料潛力所存在的障礙,包括: 資料愈趨集中於大企業手中,且多基於自身目的而使用。 私人和公共服務的提供者在資料的使用上存在多種障礙,例如:資源不足、缺乏專業知識以及擔心競爭劣勢。 社會對於資料的使用態度轉趨保守,無論是擔心資料被濫用而侵犯隱私,或是缺乏資料共享的動機。   該報告更進一步指出資料流通的跨國性,因而有必要創建值得信賴且國際兼容的資料空間,為此亦須建立可信賴資料空間的國際準則,以在國際間形成法律確定性。   觀諸我國個人資料保護法第1條便明確指出,本法制定的目的不僅是為了保護個人資料以及相應之人格權與隱私權,而是更進一步欲透過個人資料管理制度的建構與落實,健全社會及商業互信,以期達成資料的合理利用、創造價值並促進公共福祉的終極目標。   關於我國的資料共享體制,現階段主要從金融機構間開始萌芽,未來如何以數位自決權為基礎,同時在充分保障資訊安全的前提下,擴及其他產業並接軌國際,有賴更多科技與法制的創造與積累、外國經驗的借鑑以及國際參與,而台灣近日以創始會員身分加入「全球跨境隱私規則論壇」(Global Cross-Border Privacy Rules Forum)即為著例。

歐盟議會發布《可信賴人工智慧倫理準則》

  2019年4月9日,歐盟議會發布《可信賴人工智慧倫理準則》(Ethics Guidelines for Trustworthy AI)。此次內容大致延續歐盟人工智慧高階專家小組(High-level Expert Group on Artificial Intelligence)於2018年12月18日發布的《可信賴人工智慧倫理準則草案》(Draft Ethics Guidelines for Trustworthy Artificial Intelligence)之內容,要求人工智慧須遵守行善(do good)、不作惡(do no harm)、保護人類(preserve human Agency)、公平(be fair)與公開透明(operate transparency)等倫理原則;並在4月9日發布的正式內容中更加具體描述可信賴的人工智慧的具體要件,共計七面向概述如下: 人類自主性和監控(Human agency and oversight):AI係為強化人類能力而存在,使人類使用者能夠做出更明智的決策並培養自身的基礎能力。同時,AI應有相關監控機制以確保AI系統不會侵害人類自主性或是引發其他負面效果。本準則建議,監控機制應可透過人機混合(一種整合人工智慧與人類協作的系統,例如human-in-the-loop, human-on-the-loop, and human-in-command)的操作方法來實現。 技術穩健性和安全性(Technical Robustness and safety):為防止損害擴張與確保損害最小化,AI系統除需具備準確性、可靠性和可重複性等技術特質,同時也需在出現問題前訂定完善的備援計劃。 隱私和資料治理(Privacy and data governance):除了確保充分尊重隱私和資料保護之外,還必須確保適當的資料治理機制,同時考慮到資料的品質和完整性,並確保合法近用資料為可行。 透明度(Transparency):資料、系統和AI的商業模型應該是透明的。可追溯性機制(Traceability mechanisms)有助於實現這一目標。此外,應以利害關係人能夠理解的方式解釋AI系統的邏輯及運作模式。人類參與者和使用者需要意識到他們正在與AI系統進行互動,並且必須了解AI系統的功能和限制。 保持多樣性、不歧視和公平(Diversity, non-discrimination and fairness):AI不公平的偏見可能會加劇對弱勢群體的偏見和歧視,導致邊緣化現象更為嚴重。為避免此種情況,AI系統應該設計為所有人皆可以近用,達成使用者多樣性的目標。 社會和環境福祉(Societal and environmental well-being):AI應該使包含我們的後代在內的所有人類受益。因此AI必須兼顧永續發展、環境友善,並能提供正向的社會影響。  問責制(Accountability):應建立機制以妥當處理AI所導致的結果的責任歸屬,演算法的可審計性(Auditability)為關鍵。此外,應確保補救措施為無障礙設計。

TOP