歐盟執委會發起ERA vs CORONA行動計畫,加速研發創新合作對抗COVID-19

  歐盟執委會於2020年4月7日發起ERA vs CORONA行動計畫,透過歐洲研究區(European Research Area, ERA)全力支持歐洲科研合作、共享科學資訊,並給予歐洲研究團隊與企業充足的研發疫苗資金,用以對抗COVID-19。歐盟執委會已與各國達成共識,確認ERA vs CORONA行動計畫的10項優先行動:

  1. 協調各國研究與創新(Research and innovation, R&I)資金投入,專注研發新型冠狀病毒的疫苗與治療方法,加強創新合作模式以對抗疫情。
  2. 支持新型冠狀病毒患者的臨床管理,與歐盟大規模臨床實驗計畫。
  3. 將資金投入創新領域回應社會需求,關注疫情對社會經濟、醫療及資通訊技術應用、衛生系統及製造業的影響。
  4. 藉由Horizon 2020 增加對新創公司的研發財務支持;拓展歐洲創新委員會ePitching計畫(EIC ePitching),鼓勵公私夥伴共同尋求解決方案。
  5. 創造資金來源促進R&I行動,引導新創及中小企業申請國家及地方資金、私人基金會、投資歐洲計畫(Invest EU)等。
  6. 建立ERA Corona平台,提供研發資金相關的一站式服務,包括歐盟各國補助新型冠狀病毒R&I計畫的完整資訊。
  7. 設立新型冠狀病毒特設高階R&I工作小組,規劃歐盟中長期防疫措施。
  8. 加強研究基礎設施布建及跨國資料庫利用。
  9. 創建歐洲COVID-19研究資料共享平台 ,連接歐洲開放科學雲,允許快速共享研究資料及成果以加速研發、公平分享資訊。
  10. 舉辦泛歐黑客松(EU vs Virus)推動歐洲創新與社會交流。

本文為「經濟部產業技術司科技專案成果」

相關附件
你可能會想參加
※ 歐盟執委會發起ERA vs CORONA行動計畫,加速研發創新合作對抗COVID-19, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8467&no=55&tp=1 (最後瀏覽日:2026/01/30)
引註此篇文章
你可能還會想看
美國醫療保險將為醫院提供鐮狀細胞疾病基因療法的創新支付鼓勵措施

美國醫療保險和醫療補助服務中心(Centers for Medicare and Medicaid Services, CMS)於2024年4月10日發布了2025財年(Fiscal year 2025, Oct. 1, 2024, to Sept. 30, 2025)醫療保險醫院住院預期支付系統(Inpatient Prospective Payment System, IPPS)規則草案(proposed rule)。 考量到細胞療法費用高、可近用性低,2025財年規則草案便包含為醫院提供治療鐮狀細胞疾病(Sickle Cell Disease, SCD)基因療法,其新技術附加支付(New Technology Add-on Payment, NTAP)附加百分比從原本的65%提高到75%的創新支付措施。 NTAP方案是2001年由CMS推出,旨在激勵醫院採用新技術和新療法。NTAP規定新的醫療服務或技術必須滿足以下3個標準,才有資格獲得附加支付: 1.新穎性:醫療服務或技術必須是新的。一旦此治療已經被認為不是新技術,附加支付就會結束。 2.費用過高:醫院在使用新技術時,可能會產生成本超出標準的住院病患支付限額,該技術在現有醫療保險嚴重程度診斷相關群組(Medicare Severity Diagnosis-Related Groups, MS-DRG)系統下不足以支付。 3.實質的臨床改善:與目前可用的治療方法相比,使用該技術其臨床資料必須要顯示確實能改善特定病人群體的臨床結果。 NTAP透過提供經濟激勵,支持醫療機構在初期階段採用新技術,從而促進醫療創新並改善患者治療效果。SCD為一種遺傳性疾病,對美國黑人影響嚴重,且治療選擇有限。因此該創新支付鼓勵措施將使醫院可以獲得更多的資金來執行昂貴的SCD基因療法,進一步促進SCD病人獲得最新的治療,且能減少SCD長期醫療照護的相關成本。 本文同步刊載於stli生醫未來式網站(https://www.biotechlaw.org.tw)

南韓個資保護委員會發布人工智慧(AI)開發與服務處理公開個人資料指引

南韓個資保護委員會(Personal Information Protection Commission, PIPC)於2024年7月18日發布《人工智慧(AI)開發與服務處理公開個人資料指引》(인공지능(AI) 개발·서비스를 위한 공개된 개인정보 처리 안내서)(以下簡稱指引)。該指引針對AI開發與服務處理的公開個人資料(下稱個資)制定了新的處理標準,以確保這些資料在法律上合規,且在使用過程中有效保護用戶隱私。 在AI開發及服務的過程中,會使用大量從網路上收集的公開資料,這些公開資料可能包含地址、唯一識別資訊(unique identifiable information, UII)、信用卡號等個資。這些公開的個資是指任意人可藉由網路抓取技術自公開來源合法存取的個資,內容不限於個資主體自行公開的資料,還包括法律規定公開的個資、出版物和廣播媒體中包含的個資等。由於公開資料眾多,在現實中很難在處理這些公開個資以進行AI訓練之前,取得每個個資主體的單獨同意及授權,同時,南韓對於處理這些公開個資的現行法律基礎並不明確。 為解決上述問題,PIPC制定了該指引,確認了蒐集及利用公開個資的法律基礎,並為AI開發者和服務提供者提供適用的安全措施,進而最小化隱私問題及消除法律不確定性。此外,在指引的制定過程中,PIPC更參考歐盟、美國和其他主要國家的做法,期以建立在全球趨勢下可國際互通的標準。 指引的核心內容主要可分為三大部分,第一部分:應用正當利益概念;第二部分:建議的安全措施及保障個資主體權利的方法;及第三部分:促進開發AI產品或服務的企業,在開發及使用AI技術時,注意可信任性。 針對第一部分,指引中指出,只有在符合個人資料保護法(Personal Information Protection Act, PIPA)的目的(第1條)、原則(第3條)及個資主體權利(第4條)規定範圍內,並滿足正當利益條款(第15條)的合法基礎下,才允許蒐集和使用公開個資,並且需滿足以下三個要求:1.目的正當性:確保資料處理者有正當的理由處理個資,例如開發AI模型以支持醫療診斷或進行信用評級等。2.資料處理的必要性:確保所蒐集和利用的公開資料是必要且適當的。3.相關利益評估:確保資料處理者的正當利益明顯超越個資主體的權利,並採取措施保障個資主體的權利不被侵犯。 而第二部分則可區分為技術防護措施、管理和組織防護措施及尊重個資主體權利規定,其中,技術防護措施包括:檢查訓練資料來源、預防個資洩露(例如刪除或去識別化)、安全存儲及管理個資等;管理和組織防護措施包括:制定蒐集和使用訓練資料的標準,進行隱私衝擊影響評估(PIA),運營AI隱私紅隊等;尊重個資主體權利規定包括:將公開資料蒐集情形及主要來源納入隱私政策,保障個資主體的權利。 最後,在第三部分中,指引建議AI企業組建專門的AI隱私團隊,並培養隱私長(Chief Privacy Officers, CPOs)來評估指引中的要求。此外,指引亦呼籲企業定期監控技術重大變化及資料外洩風險,並制定及實施補救措施。 該指引後續將根據PIPA法規修訂、AI技術發展及國際規範動向持續更新,並透過事前適當性審查制、監管沙盒等途徑與AI企業持續溝通,並密切關注技術進步及市場情況,進而推動PIPA的現代化。

美國FDA醫療器材與放射健康中心發布2024財政年度醫療器材指引

美國食品藥物管理署(U.S. Food and drug administration, FDA)之醫療器材與放射健康中心(Center of Devices and Radiological Health, CDRH)於今(2023)年10月10日發布2024財政年度指引,其內容依據預算配置的優先順序,將2024年醫療器材與放射產品相關指引分為「A級」、「B級」及「回顧性審查」三份清單。而CDRH希望將訊息公佈後,針對這些指引的優先處理順序、修改或刪除徵求外部建議,以下節錄這三份清單內容: (1)A級清單:FDA擬於2024 財政年度優先發佈的醫療器材指引文件清單,內容包含醫材的再製造及短缺管理、預訂變更控制計畫、運用真實世界證據輔助監管之決策,及基於人工智慧/機器學習之醫材的軟體生命週期管理指引等。 (2)B級清單:FDA 在 2024 財政年度於資源許可的前提下,擬發佈的指引文件清單,內容包括醫材製造商的故障主動報告計畫、製造與品質系統軟體之確效管理,及診斷測試用之3D列印醫材管理指引。 (3)回顧性審查清單:為1994年、2004年和2014年發佈至今,目前仍適用的指引文件綜合清單,詢問是否有需與時俱進之處。 具體而言,CDRH希望徵求外界對現有清單優先順序配置合宜性的建議,同時也開放各界提出哪些醫材相關主題的指引文件草案可待補充。對於回顧性審查清單,如有修訂或刪除之必要,亦應檢具建議與具體理由。 從此三份清單及後續外界的意見,我們可藉此掌握美國在醫材短缺管理、預定變更控制、運用真實世界證據決策,及醫材軟體生命週期與確效管理等領域,政府資源配置與投入的規劃,同時也作為我國醫材政策之借鏡。

美國推動產業巨量資料(Big Data)新型應用分析--SunShot子計畫

  近年來,巨量資料(Big Data)狂潮來襲,各產業競相採用此種新型態模式,將充斥各領域之資料量,加以深度分析及集合、比對,篩選具價值性之各項資料。以美國為例,於2011年2月份正式啟動SunShot計畫,期透過聯邦政府的資源,加強推動不同領域之巨量資料分析,有利各領域之政府資源重整運用,以期使推動計畫更經濟效率且具競爭力。並且,美國政府更於2013年1月30日,宣布將挹資900萬元資助7項科專計畫,補助對象分別為: (1) SRI International; (2) 麻省理工學院(MIT); (3)北卡羅萊納大學 (Charlotte校區); (4) Sandia 國家實驗室;(5) 國家再生能源實驗室;(6) 耶魯大學;(7) 德州大學奧斯汀分校,加強各領域推動及整合。   此項「巨量資料」參與計畫之研究團隊將與公私營金融機構(financial institutions)、事業單位(utilities)及州層級之行政機關(agencies)展開合作(partnership),運用統計和電腦工具(statistical and computational tools),解決產業面之難題(challenges);同時,其將運用發展出之模型(Models),測試分散全美不同地區領航計畫(pilot projects)創新研發之影響和規模。計畫中,美國政府亦將以200萬元的預算,分析數十年來的科學報告、專利、成本、生產等資料,期能拼湊出相關產業之全貌,加速發掘科技突破之方法並有效降低成本。以德州(Texas)為例,奧斯汀分校(UT Austin)研究團隊乃與六個不同事業單位(utilities)進行合作,研析經營所蒐集之資料(datasets),以有效了解消費者的需求,提升太陽能未來安裝和聯結(installation and interconnection)之效率。   時值全球鼓勵產業轉型及資源整合,作為世界先進國家的美國,善用聯邦政府和高等學術研究機構之資源,進行整體產業之資料分析,殊值我國借鏡參考。

TOP