近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。
面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。
國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。
本文為「經濟部產業技術司科技專案成果」
2025年12月,日本人工智慧安全研究所(AI Safety Institute,下稱AISI)與日本獨立行政法人情報處理推進機構(Information-technology Promotion Agency Japan,下稱IPA)共同發布《資料品質管理指引》(Data Quality Management Guidebook)。此指引旨於協助組織落實資料品質管理,以最大化資料與AI的價值。指引指出AI加劇了「垃圾進,垃圾出(Garbage in, Garbage out)」的難題,資料品質將直接影響AI的產出。因此,為確保AI服務的準確性、可靠性與安全性,《資料品質管理指引》將AI所涉及的資料,以資料生命週期分為8個階段,並特別強調透過資料溯源,方能建立透明且可檢核的資料軌跡。 1.資料規劃階段:組織高層應界定資料蒐集與利用之目的,並具體說明組織之AI資料生命週期之各階段管理機制。 2.資料獲取階段:此步驟涉及生成、蒐集及從外部系統或實體取得資料,應優先從可靠的來源獲取AI模型的訓練資料,並明確記錄後設資料(Metadata)。後設資料指紀錄原始資料及資料歷程之相關資訊,包含資料的創建、轉檔(transformation)、傳輸及使用情況。因此,需要記錄資料的創建者、修改者或使用者,以及前述操作情況發生的時間點與操作方式。透過強化來源透明度,確保訓練資料進入AI系統時,即具備可驗證的信任基礎。 3.資料準備階段:重點在於AI標註(Labeling)品質管理,標註若不一致,將影響AI模型的準確性。此階段需執行資料清理,即刪除重複的資料、修正錯誤的資料內容,並持續補充後設資料。此外,可添加浮水印(Watermarking)以確保資料真實性與保護智慧財產權。 4.資料處理階段(Data Processing):建立即時監控及異常通報機制,以解決先前階段未發現的資料不一致、錯漏等資料品質問題。 5.AI系統建置與運作階段:導入RAG(檢索增強生成)技術,檢索更多具參考性的資料來源,以提升AI系統之可靠性,並應從AI的訓練資料中排除可能涉及個人資料或機密資訊外洩的內容。 6. AI產出之評估階段(Evaluation of Output):為確保產出內容準確,建議使用政府公開資料等具權威性資料來源(Authoritative Source of Truth, ASOT)作為評估資料集,搭配時間戳記用以查核參考資料的時效性(Currentness),避免AI採用過時的資料。 7.AI產出結果之交付階段(Deliver the Result):向使用者提供機器可讀的格式與後設資料,以便使用者透過後設資料檢查AI產出結果之來源依據,增進透明度與使用者信任。 8.停止使用階段(Decommissioning):當資料過時,應明確標示停止使用,若採取刪除,應留存刪除紀錄,確保留存完整的資料生命週期紀錄。 日本《資料品質管理指引》強調,完整的資料生命週期管理、強化溯源為AI安全與創新的基礎,有助組織確認內容準確性、決策歷程透明,方能最大化AI所帶來的價值。而我國企業可參考資策會科法所創意智財中心發布之《重要數位資料治理暨管理制度規範(EDGS)》,同樣強調從源頭開始保護資料,歷程存證與溯源為關鍵,有助於組織把控資料品質、放大AI價值。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
虛擬人生,真實訴訟! 美商藝電EA控告社交遊戲公司Zynga侵犯著作權;Zynga控告EA不正競爭。美商藝電EA(Electronic Arts)於今年八月初在舊金山地方法院控告以社群遊戲著稱的Zynga於六月在Facebook所推出的遊戲《The Ville》抄襲EA於2011年八月推出的「模擬市民(The Sims Social)」,侵犯EA的著作權。EA表示,The Ville中的設計選項、動畫、畫面處理、角色的活動及動作都原封不動地抄襲自EA的「模擬市民(The Sims Social)」。EA聲稱,Zynga抄襲了「模擬市民(The Sims Social)」原始並特殊的表達要素(original and distinctive expressive elements),明顯違反美國的著作權法。EA並表示,Zynga任用了三位自EA離職的員工而獲取了「模擬市民(The Sims Social)」的商業機密。Zynga則反譏EA欠缺對於著作權原則的了解,並表示《The Ville》是Zynga小鎮遊戲(Ville-game)系列的延續,過去曾推出的系列遊戲包含《YoVille》、《CityVille》以及《Castile Ville》,EA的指控毫無根據。 雖然《The Ville》與「模擬市民(The Sims Social)」兩者在遊戲的角色設定以及角色圖樣跟背景有諸多相似,但是Zynga在細節上做了許多與EA不同的設定。本案如果有效成立,將對於遊戲產業造成顯著影響。 美國法下,遊戲產業的智慧財產權議題中,一個重要的法律關鍵在於「思想/表達二分法(idea/expression dichotomy) ,「思想(idea)」並非著作權的保護客體,僅想法的表達方式(expression)是著作權的保護客體。舉例而言,你可以再寫一本有關於魔法學校的書,但是你不可以把書中的主要角色命名為哈利波特。 1994年時,快打旋風二(Street Fighter II)的發行商嘉富康(Capcom)控告DECO(Data East Corporation)的格鬥列傳(Fighter’s History)抄襲,但是法院認為嘉富康遊戲的角色是植基於既存典型角色以及武術原則,DECO的相似性並不侵犯快打旋風的著作權。 九月中,Zynga對EA提出反訴,控訴EA採取不正競爭(anticompetitive)以及不法(unlawfully)商業行為,違反反托拉斯法(anti-trust law)。Zynga指出,EA試圖以法律訴訟以及恐嚇離職員工的方式,非法阻止Zynga雇用EA的離職員工。Zynga指稱EA威脅Zynga將提出訴訟,要求Zynga與之簽訂「不任用協議(no-hire agreement)」,依照該協議EA將不對Zynga提出關於雇用員工的告訴以做為簽約對價。但是EA在今年八月對Zynga的著作權告訴已經打破該協議。事實上依照加州法,禁止離職員工去競爭公司任職是違法的。矽谷這類因為員工到競爭對手任職而引發的法律案件還有蘋果(Apple)以及谷歌(Google)一案,這兩家公司過去曾因為簽訂不挖角協議而遭美國司法部起訴,後來與美國司法部達成和解。EA則表示離職員工抄襲其它EA設計師,Zynga此舉意圖轉移社會及法庭注意力。除了否認EA抄襲的指控,Zynga更表示,沒有任何根據可以說明EA是虛擬人生遊戲的創始者,Zynga的《YoVille》推出時間甚至早於EA的「模擬市民(The Sims Social)」三年。 本案因為矽谷遊戲產業人才的流動性而增加了案件的複雜性,跳脫一般的著作權侵權訴訟,既然離職後到競爭對手任職是可被允許的,那麼產出類似的遊戲產品就更加難以避免,不論是基於自身的創意或者模仿過去共事同仁的創意,「學習」以及「抄襲」之間的界線總是難以劃分,如果本案成立著作權侵權,矽谷遊戲人才在開發設計遊戲時必然需要更加小心謹慎。 圖片來源: Tech Crunch
資訊揭露與市場競爭評估–研析英國水平協議指引中之資訊交換資訊揭露與市場競爭評估– 研析英國水平協議指引中之資訊交換 資訊工業策進會科技法律研究所 2023年09月23日 英國競爭與市場管理局(Competition and Markets Authority,CMA)於2023年8月16日發布《1988年競爭法第一章禁令適用於水平協議之指引》(Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements,以下簡稱CMA水平協議指引),以規範實際或潛在競爭者間之協議[1]。CMA水平協議指引提供事業擬定協議內容的參考,事業間於業務合作的同時,亦能符合法遵之要求,以維護市場公平競爭。 壹、事件摘要 英國CMA水平協議指引解釋競爭法之適用,尤其是《1998年競爭法》(Competition Act 1998,CA98)第1章禁止水平協議。2023年1月1日,《1998年競爭法(專業協議集體豁免)2022年指令》(SABEO)與《1998年競爭法(研發協議集體豁免)2022年指令》(R&D BEO)生效,於2023年8月16日發布之CMA水平協議指引,協助事業評估特定類型的水平協議是否受益於SABEO和R&D BEO,和遵守競爭法之相關規範[2]。申言之,CMA水平協議指引協助事業評估其所簽訂之協議內容,是否屬於法規範豁免之類型,且合乎競爭法之規定。 CMA水平協議指引說明研發協議[3]、生產協議[4]、採購協議[5]、商業化協議[6]和標準化協議[7]之適用與範例。鑒於大數據分析與機器學習需使用大量的資料;而大數據分析的結果,或機器學習的應用,將影響決策的形成,資訊交換因而更顯重要[8],CMA水平協議指引亦引導事業為合理的資訊交換。 資訊交換不僅為競爭市場的共同特徵,在一般的情形亦有利於消費者;例如資訊交換有助於解決資訊不對等而提升市場效率,事業能藉由比較最佳實踐方案,以提高內部效率;能減少庫存以節省成本,並處理不穩定的需求;或藉由演算法以開發新的產品或服務;[9]或減少搜尋成本,以提供消費者利益[10]。依據實際情況,資訊交換可以是有利於競爭,競爭中立或限制競爭[11]。換言之,競爭市場中適當的資訊交換,有助於事業降低成本,提升效率。 貳、重點說明 CMA水平協議指引第8章為資訊交換(Information Exchange),目的即在指導事業為資訊交換的競爭評估[12]。資訊交換是否會引發限制競爭之效應,取決於市場的特性,包含[13]: (1)市場透明度:越透明的市場,競爭之不確定性越小[14]。 (2)市場集中度:若市場中僅有少數事業,則易於達成共識,與控制市場偏差。若市場高度集中,則訊息的交換,將有助於事業了解競爭者的市場地位和策略,而扭曲競爭,甚而增加共謀(collusion)的風險;若市場分散,則競爭者間資訊的傳播與交換,對市場而言,可能為競爭中立或有利於競爭[15]。 (3)參進障礙:此使外部競爭者無法破壞市場中的共謀結果(collusive outcome)[16]。 (4)市場穩定度:在供需穩定的市場,亦可能有共謀的結果;而需求的波動、市場中事業內部的大幅成長、新事業的參進、顛覆性創新(disruptive innovation),均可能顯示市場的穩定度不足,需提升交流,以促進競爭[17]。 競爭對手間的資訊交換,依據共享資訊的內容、目的、法律與經濟背景,可能為侵權而應受限制。包含與競爭對手交換事業目前或未來的訂價方向、生產能力、商業策略、針對需求的規劃,對未來銷售的預測,和在特定市場上的財務狀況與經營策略[18],提供價格資料而能預測事業未來的行為,和與競爭對手交換潛在參進者所提出之計畫要點[19]。申言之,事業應避免資訊所生之侵權行為;並需考量市場的特性,以評估資訊交換對競爭之限制。 參、事件評析 CMA水平協議指引第8章,提供事業間交換資訊的相關建議。為提升資訊交換對市場的效益,以資訊內容而言,事業須考量資訊交換的目的,以及藉由收集資訊、確認資訊交換的參與者係使用其具有所有權的原始資料、使用歷史資訊、僅交換與達到目標相符且必要的資訊,而能減少具有商業敏感性質的內容[20]。換言之,事業須避免機敏資料的流通,並具有使用資料的權限。 以資訊應用的角度,事業應採取措施,以控制資訊的交換與使用,包含減少頻繁的交換,以特定團隊(clean team)或信託方式進行資訊交換,或使用資料池(data pool)以確認近用資料之所有權[21]。亦即事業須確認資料的來源,與交換資料的相對人,並能管理資料流通的過程。 綜上所論,足夠的資料量,使大數據分析的結果能充分反映市場的實際需求,事業的決策和布局亦更為準確,適當的資訊交換有助於提升事業的市場競爭力。CMA水平協議指引協助事業評估資訊交換對競爭之影響,事業之資訊管理,除內部資訊之維護外,亦包含外部資訊之交換,如資訊交換之必要性,與資訊近用之權限、方式等,或可提供臺灣事業參考。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]Guidance on Horizontal Agreements, GOV. UK, Competition and Markets Authority, https://www.gov.uk/government/publications/guidance-on-horizontal-agreements (last visited Aug. 23, 2023). [2]CMA COMPETITION & MARKETS AUTHORITY, Guidance on the application of the Chapter I prohibition in the Competition Act 1998 to horizontal agreements, CMA184 (Aug. 2023), 6, at 6, https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1178791/Horizontal_Guidance_FINAL.pdf (last visited Sept. 01, 2023). [3]Id., at 35 below. [4]Id., at 83 below. [5]Id., at 124 below. [6]Id., at 145 below. [7]Id., at 203 below. [8]Id., at 165. [9]Id. [10]Id., at 166. [11]CMA Competition & Markets Authority, supra note 8. [12]Id. [13]Id., at 188. [14]Id. [15]Id., at 188-189. [16]Id., at 189. [17]Id. [18]Id., at 190. [19]Id., at 191. [20]Id., at 201. [21]Id.
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。