零工經濟(Gig Economy)

  近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。

  面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。

  國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 零工經濟(Gig Economy), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8471&no=55&tp=1 (最後瀏覽日:2025/11/17)
引註此篇文章
你可能還會想看
思科系統控告蘋果侵害IPhone商標權

  當蘋果公司一宣佈新的產品iPhone將上市,思科系統公司即在星期三(2007年1月10日)控告蘋果侵害iPhone商標權。思科在7年前就已經註冊iPhone的商標,蘋果好幾次企圖向思科表明想要取得iPhone的商標權,但都被思科拒絕。思科資深副總裁馬克‧賈伯斯表示,「蘋果公司的新產品十分具有吸引力,但是他們不應該未經過思科允許,就使用iPhonee商標。」此次提出控告不但保護思科的iPhone商標免於被蘋果使用,且預防公司可能有的損害。   蘋果公司發言人娜塔莉‧凱瑞絲說,我們認為思科的控告十分無聊,而且早已有很多家公司使用iPhone的商標在寬頻電話上,蘋果是第一個將iPhone商標用在手機的公司,我們相信思科宣稱擁有iPhone商標權不足以來對抗蘋果,我們相當有信心能戰勝這場戰。   波士頓律師事務所Bromberg & Sunstein創設者布魯斯‧桑斯坦表示,思科為iPhone商標註冊權人,在法律上具有優勢,蘋果唯一可選擇的抗辯,就是宣稱i系列的商標名稱,例如iPod, iTunes和 iMac,早已造成消費者的混淆,消費者已經無法辨別iPhone是由誰所製造的。桑斯坦進一步說明,蘋果雖宣稱他們在澳洲擁有iPhone商標權,但商標權為屬地主義,因此此項宣稱對於在美國已擁有iPhone商標權的思科並無太大的影響。

反恐任務 愛爾蘭擬成立DNA資料庫

  自美國911事件後,世界各國無不重新檢視自己國內現行實施的保安制度,愛爾蘭政府最近宣布將建立一個有限的DNA資料庫的計畫,以協助對抗重大犯罪事件。該資料庫的資料儲存範圍,將包括永久保留被判處超過五年徒刑的任何重大犯罪嫌犯的DNA檔案,以及任何疑似觸及重大犯罪的嫌犯檔案,後者的檔案僅暫時保存,一旦當事人沒有遭到起訴或稍後無罪獲釋,檔案即被移除或銷毀。   我國內政部原訂七月一日起換發身分證需強制捺指紋才可領證,其目的之一也是為了要遏止治安不斷惡化的情況,不過遭到人權團體抗議強制捺印指紋為侵犯隱私之行為。大法官會議解釋則認為,內政部以戶籍法第八條規定強制全民捺指紋領身分證,並以此建立指紋資料庫,以及以個人資料保護法作為指紋可用在個案犯罪偵防的根據,兩項做法均不適當,因此以釋字第603號解釋宣告換發身分證需強制捺指紋的作法違憲。   愛爾蘭政府若要建立一有限的DNA資料庫,其立法目的與執行、管理都須有周密設計,並符合保障人權的憲法原則,否則該DNA資料庫也將會存有侵犯人權的潛在風險。

中國大陸科技部公布參與2013年度科技型中小企業創業投資引導基金階段參股的創業投資機構名單

  根據中國大陸科學技術部(以下簡稱科技部)、財政部2013年11月8日以國科發計〔2013〕647號公布之<科技部、財政部關於2013年度科技型中小企業創業投資引導基金階段參股項目立項的通知>,確定計有21家創業投資機構參與本年度階段參股之立項項目,計劃資助金額約人民幣8億元。   按「科技型中小企業創業投資引導基金」係中國大陸財政部及科技部為貫徹<國務院實施《國家中長期科學和技術發展規劃綱要(2006至2020年)若干配套政策》>,支持科技型中小企業自主創新,而於2007年7月6日公布<科技型中小企業創業投資引導基金管理暫行辦法>。其中第3條規定:「引導基金的資金來源為,中央財政科技型中小企業創新基金;從所支持的創業投資機構回收和社會捐贈的資金」;第8條第一項前段規定:「本辦法所稱的創業投資企業,是指具有融資和投資功能,主要從事創業投資活動的公司制企業或有限合夥制企業」。   中國大陸政府希冀透過引導基金的協助,鼓勵當地創投業者參與引導基金支持的研發項目,並以「創業投資企業」或「創業投資管理企業」等方式,對於從事科技研發的中小企業提供實質資金協助,其具體鼓勵的方式依前述辦法第5條規定可為階段參股、跟進投資、風險補助等。以本次公布之通知為例,其所稱「階段參股」是指引導基金向創業投資企業進行股權投資,並在約定的期限內退出(參股期限一般不超過5年)。而符合該辦法規定條件的創業投資機構作為發起人,發起設立新的創業投資企業時,可以申請階段參股。   近來我國主管機關為促進經濟發展,不斷思索鼓勵創業、就業之措施,或許從創投面提供實質之協助也是參酌因素之一,其他國家或地區的具體措施及內容似值得我們後續觀察、研究。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP