近年來興起以UBER為首的「零工經濟」(Gig Economy)議題。按國際勞工組織(International Labor Organization, ILO)的說明:所謂「零工經濟」,是透過數位勞工媒合平台,將分散於各地的勞力資源,按需求(On-Demand)調度到特定地點以執行任務。這些被調度的勞工即為「零工」,多半從事服務性質或任務性質單純且零碎(Micro-Task)的工作,如代駕、代辦雜務、居家打掃。
面對零工經濟的風潮及其衍生的勞資問題,各國積極針對零工經濟推出對應政策。舉例而言,美國加州政府於2019年9月18日通過《AB 5法》(California Assembly Bill 5 (2019)),擴大「正式員工」(Employee)的解釋範圍,並要求資方必須對於「獨立承攬人」(Independent Contractor)之認定負舉證責任。美國國會亦推出《保護零工經濟法》草案(Protect the Gig Economy Act of 2019)。國際組織方面,國際勞工組織從2015年起,發布多份研究報告,更在2017年8月成立「國際勞工組織全球委員會」(ILO Global Commission on the Future of Work)。
國際勞工組織倡議各國設立社會福利專法保障所有零工的基本工資,國際勞工組織指出:美國於2017年約有5,500萬名零工(Gig Workers),佔整體勞動力的34%,2020年可能會成長到43%。然而,僅50%的零工獲得應有的報酬。觀察2017年的數據,零工的平均時薪是4.43美元,假設考量閒置的時間,平均時薪僅剩3.31美元,時薪中位數是2.16美元。關於零工集會結社自由方面,零工已慢慢開始有了組織性的工會,然而,零工向資方爭取權益時,面對傳統工會較不會存在的難題:32%的零工僅為補貼既有正職工作,零工間交流少、對於權益難成共識,無法進而凝聚集體訴訟的力量。再者,勞工運動以實體為首選,然而零工大多透過「數位平台」,數位平台常有總部在境外的現象,零工較難有特定集會地點,甚至難辨識出談判的對象。最後,平台業者多數聲稱零工僅為「獨立承攬人」,然而,平台業者和零工間的法律關係是否為「承攬關係」尚有待商榷,各國政府及國際組織仍在研擬討論階段。
本文為「經濟部產業技術司科技專案成果」
企業或機構對於所屬研發人員所為的 職務發明 , 應該給予多少的報償才算「合理」,近年來成為日本專利制度的爭議話題之一,其中 Olympus Optical Co., Ltd. v. Shumpei Tanaka 、 Yonezawa v. Hitachi Co. Ltd. 、 Nakamura v. Nichia Chemical Co Ltd 幾件訴訟案件更受到高度矚目,引發各界對於日本特許法(即專利法)中第 35 條第 3 、 4 項相關規定之檢討與議論,進而促使日本國會於 2004 年 5 月 28 日 通過特許法修正案,並自 2005 年 4 月 1 日 正式生效。 修正後之日本特許法有關受雇人發明制度部分,修正了第 35 條第 3 項及第 4 項並新增第 5 項。第 35 條第 3 項規定,受雇人依據契約、工作規則或其他約定,同意授予雇用人關於受雇人所為發明之專利申請權、專利權或設定專用實施權時,受雇人對於雇用人有收取合理報酬之權。第 35 條第 4 項規定,依據前項所定之契約、工作規則與其他約定,訂有報酬之約定時,在該報酬之決定標準係經由受雇人與雇用人協議為之,該報酬標準係經公開,且受雇人對於計算報酬金額所表達之意見,亦被充分聽取的情形下,依據該約定所為之報酬金給付應被認為是合理的。又同條第 5 項之規定,若企業內部之契約、工作規則與其他約定,並未規定報酬金額,或雖有規定,但該規定之報酬金額被認為是不合理的,則第 3 項所規定之合理報酬金額,應權衡雇用人基於該發明所獲得之利益、所承受之負擔及對該發明所做之貢獻,與受雇人在相關發明中所獲得之利益及其他相關因素加以認定之。 上述修正規定最大的特色在於 :(一)尊重自主協議 ; (二)報酬計算要件更加具體化 ; (三)鼓勵裁判外紛爭解決手段 。新修正之受雇人制度會帶來什麼樣的影響,目前各界仍在觀察;不過可確定的是,相較於舊法,新法至少在計算合理報酬上,要求雇用人須踐行更多的程序及其他要件,而這程序或要件規定將可減少法官在舊法時計算合理報酬金額的沈重負擔,與高度不確定所帶來的風險,並且亦可減少受雇人發明訴訟的總數量。 以日本電子大廠 Toshiba 新近在 7 月底與其離職員工 Fujio Masuoka 就閃光記憶晶片技術( flash memory chip technology )所達成之職務發明報酬和解協議為例, Toshiba 在 7 月 27 日 發布的新聞稿中,即特別感謝東京地方法院對公司有關員工職務發明之報酬政策及看法的尊重。
世界智慧財產權組織發表2020年全球創新指數報告世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年9月2日發表「2020年全球創新指數報告」(Global Innovation Index 2020, GII 2020),報告中比較131個經濟體之最新全球創新趨勢。GII為一年一度發行之報告,除了比較不同經濟體的創新指數外,每年會挑選不同創新議題進行深度研究,2020年研究主題為「誰投資創新?」(WHO WILL FINANCE INNOVATION?)。 GII的報告評比,區分為七大指標分別為:組織機構(Institutions)、研發與人力資源(Human capital and research)、基礎建設(Infrastructure)、市場成熟度(Market Sophistication)、企業成熟度(Business sophistication)、知識技術產出(Knowledge and technology outputs)以及創意產出(Creative outputs)。其下再區分為21個次標和80個小標例如政府效能(Government effectiveness)、法規範環境建構(Regulatory environment)、教育支出占GDP比例、外國學生比例、R&D支出占GDP比例、生態永續度、高科技出口、資通訊服務出口等。2020年評比全球創新指數最高的10個國家排名分別為:瑞士、瑞典、美國、英國、荷蘭、丹麥、芬蘭、新加坡、德國和南韓,均為高所得國家;這也是南韓第一次躋身進入前10名。 另外報告中亦說明,2020年COVID-19大流行引發前所未有的經濟停滯。在COVID-19爆發之前,研發支出成長明顯快於全球GDP成長,創業投資(Venture capital)和IP應用達到高峰,但疫情發生的現階段全球經濟成長大幅度下降。然而經濟成長停滯之下,突破性技術創新的潛力仍在繼續存在,例如許多仍保有現金流的大型ICT企業仍持續推動數位創新,製藥技術與生物科技產業的研發支出大量增加,健康產業研發也受到重點關注。此外,COVID-19危機亦會促進傳統產業(例如旅遊、教育和零售等)之創新,以及改變企業在本地或全球之生產工作組織方式。而在各國政府為忙於制定緊急救濟計畫(emergency relief packages),以緩解地域封鎖所造成的負面影響和經濟衰退的同時,這些緊急救濟計畫對新創公司之融資多半不夠明確,到目前為止,各國政府並沒有創新研發作為當前刺激經濟計畫中的優先事項(priority)。 報告中針對「誰投資創新?」之主題,統計數據顯示創新金融(Innovation finance)雖然受疫情影響有所下降,但金融體系尚屬健全。惟資助新創企業的資金正在枯竭(drying up),北美、亞洲和歐洲地區的創業投資交易也急劇下降,幾乎看不到首次公開發行(IPO)。即使是倖存下來的新創公司,其盈利能力和對創投者(Venture Capitalist)的吸引力也在下降。也因為疫情影響,創投者減少對創新、小型和多元化的新創事業提供資金,取而代之關注所謂的「大型交易」(mega-deals),也就是資助大型企業的發展,並將投資領域轉向健康、線上教育(online education)、大數據、電子商務和機器人科技。此外,報告中亦說明近期創投多半集中在可以短期得到報酬的創新事業,例如資通訊軟體及服務、消費性產品服務、金融商品等,取得創投機構大量資金。相較之下,若研發較為複雜的前瞻科學技術,反而取得之資金較少;同時COVID-19惡化此現象,使研發期較長之產業和企業面臨更嚴峻的財務限制。
歐洲個人資料保護委員會發布數位服務法與一般資料保護規則相互影響指引「歐洲資料保護委員會」(European Data Protection Board, EDPB)於2025年9月12日發布《數位服務法》(Digital Services Act, DSA)與《一般資料保護規則》(General Data Protection Regulation, GDPR)交互影響指引(Guidelines 3/2025 on the interplay between the DSA and the GDPR)。這份指引闡明中介服務提供者(intermediary service providers)於履行DSA義務時,應如何解釋與適用GDPR。 DSA與GDPR如何交互影響? 處理個人資料的中介服務提供者,依據處理個資的目的和方式或僅代表他人處理個資,會被歸屬於GDPR框架下的控制者或處理者。此時,DSA與GDPR產生法規適用的交互重疊,服務提供者需同時符合DSA與GDPR的要求。具體而言,DSA與GDPR產生交互影響的關鍵領域為以下: 1.非法內容檢測(Illegal content detection):DSA第7條鼓勵中介服務提供者主動進行自發性調查,或採取其他旨在偵測、識別及移除非法內容或使其無法存取的措施。指引提醒,中介服務提供者為此採取的自發性行動仍須遵守GDPR要求的處理合法性,而此時最可能援引的合法性依據為GDPR第6條第1項第f款「合法利益」(legitimate interests)。 2.通知與申訴等程序:DSA所規定設通報與處置機制及內部申訴系統,於運作過程中如涉及個資之蒐集與處理,應符GDPR之規範。服務提供者僅得蒐集履行該義務所必須之個人資料,並應確保通報機制不以通報人識別為強制要件。若為確認非法內容之性質或依法須揭露通報人身分者,應事前告知通報人。同時,DSA第20條與第23條所規範之申訴及帳號停權程序,均不得損及資料主體所享有之權利與救濟可能。 3.禁止誤導性設計模式(Deceptive design patterns):DSA第25條第1項規範,線上平台服務提供者不得以欺騙或操縱其服務接收者之方式,或以其他實質扭曲或損害其服務接收者作出自由且知情決定之能力之方式,設計、組織或營運其線上介面,但DSA第25條第2項則宣示,線上平台提供者之欺瞞性設計行為若已受GDPR規範時,不在第25條第1項之禁止範圍內。指引指出,於判斷該行為是否屬 GDPR 適用範圍時,應評估其是否涉及個人資料之處理,及該設計對資料主體行為之影響是否與資料處理相關。指引並以具體案例補充,區分屬於及不屬於 GDPR 適用之欺瞞性設計模式,以利實務適用。 4.廣告透明度要求:DSA第26條為線上平台提供者制定有關廣告透明度的規範,並禁止基於GDPR第9條之特別類別資料投放廣告,導引出平台必須揭露分析之參數要求,且平台服務提供者應提供處理個資的法律依據。 5.推薦系統:線上平台提供者得於其推薦系統(recommender systems)中使用使用者之個人資料,以個人化顯示內容之順序或顯著程度。然而,推薦系統涉及對個人資料之推論及組合,其準確性與透明度均引發指引的關切,同時亦伴隨大規模及/或敏感性個人資料處理所帶來之潛在風險。指引提醒,不能排除推薦系統透過向使用者呈現特定內容之行為,構成GDPR第22條第1項的「自動化決策」(automated decision-making),提供者於提供不同推薦選項時,應平等呈現各項選擇,不得以設計或行為誘導使用者選擇基於剖析之系統。使用者選擇非剖析選項期間,提供者不得繼續蒐集或處理個人資料以進行剖析。 6.未成年人保護:指引指出,為了符合DSA第28條第1項及第2項所要求於線上平台服務中實施適當且相稱的措施,確保未成年人享有高度的隱私、安全與保障,相關的資料處理得以GDPR第6條第1項第c款「履行法定義務」作為合法依據。 7.系統性風險管理:DSA第34與35條要求超大型在線平台和在線搜索引擎的提供商管理其服務的系統性風險,包括非法內容的傳播以及隱私和個人數據保護等基本權利的風險。而指引進一步提醒,GDPR第25條所設計及預設之資料保護,可能有助於解決這些服務中發現的系統性風險,並且如果確定系統性風險,根據GDPR,應執行資料保護影響評估。 EDPB與其他監管機關的後續? EDPB的新聞稿進一步指出,EDPB正在持續與其監管關機關合作,以釐清跨法規監理體系並確保個資保護保障之一致性。後續進一步的跨法域的指引,包含《數位市場法》(Digital Markets Act, DMA)、《人工智慧法》(Artificial Intelligence Act, AIA)與GDPR的相互影響指引,正在持續制定中,值得後續持續留意。
經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。