澳洲2020年5月全國數位經濟與科技會議會後聲明

  澳洲產業、科學、能源及資源部(Department of Industry, Science, Energy and Resources)於2020年5月15日舉行全國數位經濟與科技會議,並於會後發表「2020年5月全國數位經濟與科技會議會後聲明」。本次會議由澳洲產業科學能源及資源部部長擔任主席,邀集各州、領地地方政府的創新或科技部門首長,以視訊方式研商COVID-19疫情後如何整合澳洲企業的數位能量,並使澳洲在2030年成為全球數位經濟的領先者。

  聲明中首先肯定澳洲數以萬計的企業在面對COVID-19疫情時所展現的危機應對能力與提出各式數位科技解決方案,用以支持員工、服務消費者、提出資源供應的替代方案、溝通利害關係人等,有效地提升了營運與財務上的效率。而政府則藉由提供各式財務、社會保險與稅務上的支援措施,並持續針對個別情況規劃最適的支援方案。

  聲明指出根據研究,數位工具將能協助小型企業每週節省約10小時的工時,並提升約27%的營收;若乘上澳洲全國小型企業的總數,等於每週可省下約2200萬小時的工時,並可年增約3850億元的營收。企業在疫情期間所採取的數位科技解決方案是未來推動營運模式數位轉型的契機,因此在疫情後整合澳洲官方與民間的數位能量,將是疫情後經濟復甦與未來經濟成長的關鍵。

  聲明指出與會聯邦及地方政府相關首長已達成共識,將組成「數位經濟與科技資深官員小組」(Digital Economy and Technology Senior Officials Group),專責整合聯邦政府與地方政府的數位政策。本小組將提出數位經濟政策與企業所需的支援措施,用以加速數位轉型與COVID-19疫情後的經濟復甦,包含完成人工智慧及自主系統能力地圖(Artificial Intelligence and Autonomous Systems Capability Map),來找出尚待強化的能力與可加強合作的契機。

  此外本小組將合作推動數位與資通安全工作、關鍵技術法規鬆綁,以協助減少企業法遵障礙並支持數位經濟成長。COVID-19疫情下揭示澳洲推動數位轉型的重要性,期許本小組能有效整合數位能量並填補數位落差,未來將每年召開三次全國數位經濟與科技會議,追蹤澳洲數位經濟與科技生態系的推動情形,並聽取資深官員小組的定期工作報告。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 澳洲2020年5月全國數位經濟與科技會議會後聲明, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8479&no=55&tp=5 (最後瀏覽日:2026/01/23)
引註此篇文章
你可能還會想看
世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

京都議定書效應 核電乾淨能源鹹魚翻身

  京都議定書實施後,號稱最乾淨能源的核電,反而有利於環境;而台灣燃煤電廠密度列世界前茅,是否有必要再檢討「非核家園」政策,值得觀察。    調查顯示,美國除了將要提前除役的核電廠延役外,芬蘭、韓國、日本都有建新核電廠的計畫,中國大陸更將以一年一座核電的速度,持續到 2020 年,美國奇異公司、法國、甚至韓國都有意分食這塊大餅,就連台灣反核的師法對象德國,都有改弦易轍的打算。    另外,根據國際原子能委員會推估, 2020 年前全球將有超過 60 座的核電廠上線運作,將全球核電廠的數量推升到 500 座,這些核電廠大多分布在亞洲。    目前台灣燃煤發電廠密度名列世界前茅,不論是二氧化碳及汞汙染都十分嚴重,面對京都議定書,燃煤電廠勢必不能再增加,不必將核能發電排除在未來選項中。面對京都議定書所造成的新論點,及國際能源不斷上漲的新趨勢,台灣在六月份全國能源會議中該訂定新的能源比例,不必特別排除核能發電,並發展再生能源,另外,在鼓勵汽電共生政策中,該特別鼓勵天然氣電廠,以減少燃煤電廠比例不斷上升。

簡介美國FTC垃圾電郵法制施行成效報告

遠距健康照護之法律議題研析

TOP