日本發布網路安全相關法令問答集

  日本國家網路安全中心(内閣サイバーセキュリティセンター,或稱National Information Security Center, NISC)於2020年3月2日發布「網路安全相關法令問答集」(サイバーセキュリティ関係法令Q&Aハンドブック),以回應日本內閣在2017年7月27日通過的「網路安全戰略」(サイバーセキュリティ戦略)中所提及應整理相關法制,以利企業實施網路安全措施與對策之決定。因此,內閣網路安全戰略本部(サイバーセキュリティ戦略本部)普及啟發‧人才培育專門調查會(普及啓発・人材育成専門調査会)於同年10月10日成立工作小組,針對網路安全相關法令進行推動與調查工作。

  本問答集內容涉及13項法律議題,包括議題如下:

  1. 說明網路安全基本法(サイバーセキュリティ基本法)網路安全之定義與概要;
  2. 以公司法為核心,從經營體制觀點說明董事義務,例如建立內部控制機制,以確保系統審核與資料揭露之適當性;
  3. 以個人資料保護法為核心,例如說明個人資料的安全管理措施;
  4. 以公平交易法(不正競争防止法)為核心,說明在營業秘密的保護範圍內,利用提供特定資料與技術手段,來實施迴避行為係屬無效;
  5. 以勞動法規為核心,說明企業採取網路安全措施之組織與人為對策;
  6. 以資通訊網路、電信業者等為中心,說明IoT相關法律問題;
  7. 以契約關係為中心,說明電子簽章、資料交易、系統開發、雲端應用服務等議題;
  8. 網路安全相關證照制度,例如資訊處理安全確保支援人員;
  9. 說明其他網路安全議題,例如逆向工程、加密、訊息共享等;
  10. 說明發生網路安全相關事故之因應措施,例如數位鑑識;
  11. 說明當網路安全糾紛有涉民事訴訟時應注意之程序;
  12. 說明涉及網路安全之刑法規範;
  13. 描述日本企業在實施網路安全措施時,應注意之相關國際規範,例如歐盟一般資料保護規則(General Data Protection Regulation, GDPR)與資料在地化(Data Localization)等議題。

  此外,隨著網路與現實空間的融合,各產業發展全球化,相關法規也日益增加,惟網路安全相關法規,在原無網路安全概念與相關法制的日本法上,卻鮮少有較為系統化的概括性彙編與解釋文件。因而盤點並釐清網路安全相關法令則成為首要任務,故研究小組著手進行調查研究,並將調查結果—「網路安全法律調查結果」(サイバーセキュリティ関係法令・ガイドライン調査結果)與「第四次關鍵基礎設施資訊安全措施行動計畫摘要表」(重要インフラの情報セキュリティ対策に係る第4次行動計画)作為本問答集之附錄文件以資參酌。最後,NISC期待透過本問答集,可作為企業實施具體網路安全對策之實務參考。

相關附件
你可能會想參加
※ 日本發布網路安全相關法令問答集, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8481&no=67&tp=1 (最後瀏覽日:2026/02/15)
引註此篇文章
你可能還會想看
2011年個人資料外洩事件與前年相比減少128件,總數為1551件-預測賠償金額比前年擴大1.5倍

  日本2011年個人資料外洩事件及事故的件數比前年減少為1551件,但洩漏的個人資料筆數卻超過前年一成以上,約有600萬筆個人資料外洩。從數字來看預估的賠償金額是超過1900億日幣。   日本網路資安協會(JNSA)與資訊安全大學研究所的原田研究室及廣松研究室共同針對報紙集網路媒體所報導的個人資料外洩相關事件及事故所進行的調查所做的結論。   新力集團旗下的海外公司雖然發生合計超過1億筆的大規模個人資料外洩的意外,但此一事故並無法明確判別是否屬於個人資料保護法的適用範圍,因此從今年的調查對象裡排除。   在2011年發生的資料外洩事件有1551件,比起前年的1679件減少128件,大約跟2009年所發生的個人資料外洩差不多水準。外洩的個人資料筆數總計約628萬4363筆,與前年相較約增加70萬筆。平均1件約洩漏4238筆個人資料。   將事故原因以件數為基礎來分析,可以發現「操作錯誤」佔全體的34.8%為第一位,其次是「管理過失」佔32%,再接下來是「遺失、忘記帶走」佔13.7%。但以筆數來看,值得注意的是「管理過失」佔37.7%最多,但「操作錯誤」就僅有佔2.3%的少數。   再以佔全體事件件數5%的「違法攜出」就佔了全體筆數的26.9%;在佔全體件數僅有1.2%的「違法存取」卻在筆數佔了20.9%,可以看到平均每一件的受害筆數有開始膨脹的傾向。   再者從發生外洩原因的儲存媒體來看,紙本佔了以件數計算的68.7%的大多數,以USB記憶體為首的外接式記憶體佔了10.1%;但以筆數計算的話,外接式記憶體佔了59.1%、網路佔了25.5%的不同的發生傾向。   從大規模意外來看,金融機關與保險業界是最值得注意,前10件裡佔了7件。從發生原因來看,「違法攜出」及「內部犯罪」所造成的事故10件中有4件,其次是「管理過失」。規模最大的是山陰合同銀行的受委託人將業務所需的165萬7131件個人資料攜出的事故。   依據2011年所發生的事件及事故的預估賠償額是1899億7379萬日幣。遠超過前年的1215億7600萬日幣。平均一起事件預估損害賠償金額有1億2810萬日幣,每人平均預估賠償金額是4萬8533日幣。

世界經濟論壇發布《2022年全球網路安全展望》

  世界經濟論壇(World Economic Forum, WEF)於2022年1月18日發布《2022年全球網路安全展望》(Global Cybersecurity Outlook 2022),以面對因COVID-19大流行所致之遠距辦公、遠距學習、遠距醫療等新形態數位生活模式快速發展,以及日漸頻繁之具破壞性網路攻擊事件。為考量國家應優先考慮擴展數位消費工具(digital consumer tools)、培育數位人才及數位創新,本報告說明今年度網路安全發展趨勢及未來所要面對之挑戰包括如下: COVID-19使得工作習慣轉變,加快數位化步伐:約有87%企業高階管理層計畫透過加強參與及管理第三方的彈性政策、流程與標準,提高其組織的網路韌性(cyber resilience)。 企業資安長(chief information security officers, CISO)及執行長(chief executive officers, CEO)之認知差異主要有三點:(1)92%的CEO認為應將網路韌性整合到企業風險管理戰略中,惟僅55%CISO同意此一作法;(2)由於領導層對網路韌性認知差異,導致安全優先等級評估與政策制定可能產生落差;(3)缺乏網路安全人才以面對網路安全事件。 企業最擔心之三種網路攻擊方式為:勒索軟體(Ransomware attacks)、社交工程(social-engineering attacks),以及惡意內部活動。惡意內部活動係指企業組織之現任或前任員工、承包商或業務合作夥伴,以對組織產生負面影響方式濫用其關鍵資產。 憂心中小企業數位化不足:本研究中有88%之受訪者表示,擔心合作之中小企業之數位化程度不足,導致供應鏈或生態系統中使其網路韌性受阻。 網路領導者認為建立明確有效的法規範,將有助於鼓勵資訊共享與促進合作。

日本經濟產業省公布獲選2021年數位轉型品牌之企業名單

  日本經濟產業省(下稱經產省)與東京證券交易所共同選出「數位轉型品牌(下稱DX品牌)」,並於2021年6月7日公布獲選「DX品牌2021」、「DX關注企業2021」的企業名單。獲選的企業不僅導入優良的資訊系統、活用數據,並以數位技術為基礎的創新商業模式及管理方法勇於挑戰變革,預期能將數位技術發揮到最大的作用。   DX品牌評價的項目包含企業的願景、商業模式、經營策略、數位技術策略實施成果與重要成果指標的公開共享、公司治理。為了加強鼓勵企業推動數位轉型,經產省與東京證券交易所從獲選「DX品牌2021」的企業名單中,再選出「DX大賞企業」,作為數位時代的領導企業。另外,今年度針對因應新冠肺炎採取優良數位技術對策的企業,又特別選出「數位×新冠肺炎對策企業」。   DX品牌即為舊有的「進攻IT管理品牌」。「進攻IT管理品牌」是經產省於2015年至2019年,為了促進日本企業在IT上的運用,與東京證券交易所共同選出積極運用IT的企業為「進攻IT管理品牌」。直到2020年後,因應數位技術產生新興的商業模式,經產省推動企業從IT運用轉向數位轉型技術,並將「進攻IT管理品牌」改為「數位轉型品牌(DX品牌)」。

美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用

  在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。   美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論­­—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。   與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。   但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。

TOP