澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告

  澳洲及紐西蘭公路監理機關聯合會(Austroads)於2020年3月18日發布「輔助駕駛及自動駕駛車輛之駕駛人教育及訓練報告(Education and Training for Drivers of Assisted and Automated Vehicles)」,該報告目的在於研究有哪些技巧、知識與行為,為目前與未來人們使用具有輔助或自駕功能車輛所需具備的;並檢視註冊與發照之相關機關應擔任何種角色,以確保駕照申請人具有足夠能力以使用相關科技。報告中所關注之輔助與自駕車輛,為具有SAE自動駕駛層級第0至第3級之輕型或重型自駕車輛;目前澳洲道路規範並未禁止第3級之自駕車使用,但駕駛人仍應保持對車輛之控制且不得同時進行其他行為。

  報告認為目前之駕駛執照發照架構尚不需改變,但註冊與發照機構仍可於輔助與自動駕駛車輛的學習與評估中扮演一些角色,包含:

  1. 鼓勵經銷商、製造商與相關利益團體進行有關如何安全運用相關系統,同時避免過度依賴之教育與訓練。
  2. 支持將自駕車技術相關之特定重要資訊整合進所有層級之教育與訓練中,但不使用強制性之評估程序進行能力評估。
  3. 應關注如何於澳洲設計規範(Australian Design Rules, ADRs)或澳洲新車評估計畫(Australasian New Car Assessment Program, ANCAP)中規範特定車輛之安全公眾教育、整合重要資訊於既有的知識與技術訓練,以及建立強制之學習計畫。

  未來澳洲及紐西蘭公路監理機關聯合會將繼續發展相關計畫以實施本報告中之相關建議,以使教育訓練系統更加完善。

本文為「經濟部產業技術司科技專案成果」

相關連結
※ 澳洲及紐西蘭公路監理機關聯合會發布輔助與自動車輛駕駛之教育與訓練研究報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8493&no=55&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
日本經產省公布AI、資料利用契約指引

  伴隨IoT和AI等技術發展,業者間被期待能合作透過資料創造新的附加價值及解決社會問題,惟在缺乏相關契約實務經驗的狀況下,如何締結契約成為應首要處理的課題。   針對上述狀況,日本經濟產業省於2017年5月公布「資料利用權限契約指引1.0版」(データの利用権限に関する契約ガイドラインVer1.0),隨後又設置AI、資料契約指引檢討會(AI・データ契約ガイドライン検討会),展開後續修正檢討,在追加整理資料利用契約類型、AI開發利用之權利關係及責任關係等內容後,公布「AI、資料利用契約指引草案」(AI・データの利用に関する契約ガイドライン(案)),於2018年4月27日至5月26日間公開募集意見,並於2018年6月15日正式公布「AI、資料利用契約指引」(「AI・データの利用に関する契約ガイドライン)。   「AI、資料利用契約指引」分為資料篇與AI篇。資料篇整理資料契約類型,將資料契約分為「資料提供型」、「資料創造型」和「資料共用型(平台型)」,說明個別契約架構及主要的法律問題,並提示契約條項及訂定各條項時應考慮的要點,希望能達成促進資料有效運用之目的。   AI篇說明AI技術特性和基本概念,將AI開發契約依照開發流程分為(1)評估(assessment)階段;(2)概念驗證(Proof of Concept, PoC)階段;(3)開發階段;(4)進階學習階段,並針對各階段契約方式和締結契約時應考慮的要點進行說明,希望達成促進AI開發利用之目的。

美國參議院提出《產業融資公司法案》成立美國產業金融機構(IFCUS)助高科技產業技術發展與強化供應鏈韌性

  美國參議院於2021年8月12日提出全新《產業融資公司法案》(Industrial Finance Corporation Act),擬授權成立美國產業金融公司(Industrial Finance of the U.S., IFCUS)投資半導體、量子運算、人工智慧、網路安全、生物科技等高科技領域,旨在促進國內製造業創新和打造良好就業機會。   本法案首先點出國內在關鍵技術供應鏈上所面臨的困境,包括「國內製造商缺乏足夠的資金管道致技術工作外包,影響到美國在關鍵技術(如半導體和5G通訊硬體)生產的主導地位」、「目前美國的創新模式較依賴私人資本協助政府將研究成果產品化,然因私人資本通常會傾向尋求短期投資回報,與新興技術領域較需採長期投資發展策略有別」,以及「官方捐款計劃跟不上創新步伐使得納稅人須承擔技術創新的高風險,但卻無法獲得相應的高回報」。接著,法案提到為解決前述困境,擬藉由法案授權成立美國國有企業產業金融公司(IFCUS),以投資方式協助與經濟國家安全相關重要產業之發展,並幫助相關產業利用額外私人資金,使納稅人在承擔高風險之際,亦有機會獲取相應的高回報。   依據《產業融資公司法案》所成立之國有企業產業金融公司(IFCUS),則將支持關鍵產業彈性供應鏈、美國製造業經濟發展及就業機會、先進技術商業化、中小企業廠商與資金門檻較低廠商、易受系統性投資不足與不公平產業政策等。在具體運作模式上,IFCUS將先與私人企業合作,利用法案所授權的500億美元資本進行融資,並由IFCUS發行及提供擔保貸款、購買股權、發行債券、收購資產、創建投資設施和企業基金及投資證券化等,藉以創造更多資本額。並鑒於IFCUS為一國營單位,相對較有能力保持優良的社會環境和勞動標準,創造全國就業機會、減少環境危害及對公眾與國會負責,同時確保企業決策係為納稅人服務。最後,透過IFCUS與政府研究機構協調,建立保障措施,以及提供私人資本和政府計畫補助,鼓勵天使投資以降低市場競爭影響。簡而言之,即希望憑藉IFCUS國有企業之設立,為美國高科技製造業提供策略性投資、產經政策等具體援助,藉以強化供應鏈韌性。

美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」

  美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。   為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。

歐盟行動電視管制架構及發展策略-以市場進入管制為中心

TOP