美國商務部工業及安全局(Bureau of Industry and Security, BIS)於2020年5月15日公告,為防止中國大陸華為取得關鍵技術,修正美國《出口管制規則》(Export Administration Regulations, EAR)第736.2(b)(3)條第(vi)款「外國直接產品規則」(Foreign-Produced Direct Product Rule),限制華為透過國外廠商,取得包含美國技術及軟體設計製造在內的半導體產品,以保護美國國家安全。並於「實體清單」(Entity List)增加註腳一(footnote 1 of Supplement No. 4 to part 744)之規定,使部分出口管制分類編號(Export Control Classification Number, ECCN)第3(電子產品設計與生產)、4(電腦相關產品)、5(電信及資訊安全)類之技術所製造的產品,不能出口給華為與分支企業。
自2019年起,BIS將華為及其114個海外關係企業列入實體清單以來,任何要出口美國產品給華為的企業,必須事先取得美國出口許可證;然而,華為及其海外分支機構透過美國委託海外代工廠商生產產品事業,繞道使用美國軟體和技術所設計的半導體產品,已破壞美國國家安全機制與設置出口管制實體清單所欲達成之外交政策目的。本次為修補規則漏洞調整「外國直接產品規則」,不僅限制華為及其實體清單所列關係企業(例如海思半導體),使用美國商業管制清單(Commerce control list, CCL)內的軟體與技術,設計生產產品。美國以外廠商(例如我國台積電)為華為及實體清單所列關係企業生產代工,使用CCL清單內的軟體與技術,設計生產的半導體製造設備與產品,亦將同受《出口管制規則》之拘束。這代表此類外國生產產品,從美國以外地區,透過出口、再出口或轉讓給華為及實體清單上的關係企業時,皆需取得美國政府出口許可證,影響範圍擴及全球產業供應鏈。
本文為「經濟部產業技術司科技專案成果」
英國為了 減少受到恐怖威脅和犯罪攻擊,於去年底在一讀通過 英國身分證法,預計2008年實施。該法案最具爭議之處是記載資料,包含一些生物辨識 (biometrics) 資料,如指紋、容貌辨識和虹膜掃描等,這些資料將會儲存在國家身分辨識註冊資料庫中。反對身分證法案者認為,儲存這些資料已侵犯個人隱私權。保守黨議員表示,除非內閣能「確實證明」有其必要性,否則將反對身分證法案到底。 現行持有英國護照並不需要更新,但在2008年後想要申請更新或換發護照時,就必須遵守新的規定,也引發另一爭議問題~費用過高。倫敦政經學院的報告認為,每個人的新版身分證所需的技術成本,實際需要約 300英鎊;而登錄生物辨識資訊所需要的掃描器,就需要花4000英鎊;另外,所登錄的資訊判讀性會隨著時間而降低,至少得每五年重新掃描換發。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
美國司法部稱Google的隱私權考慮是藉口美國司法部曾在2006年1月要求Google公司交出100萬張網頁資料,並提供一週內用戶搜尋關鍵字的紀錄,以協助布希政府舉證說明現行網頁過濾技術的漏洞,為捍衛兒童線上保護法(1998 Child Online Protection Act)提供辯護。但Google公司於2月17日,以大型企業商業機密外洩和用戶隱私權遭到侵犯為由,向加州法院提出措辭強硬的法律摘要報告,並拒絕美國司法部的要求。 針對Google所提出的摘要報告,美國司法部於2月24日提出回應。美國司法部公開表示,Google公司所宣稱:「提供用戶搜尋資訊將侵犯用戶的隱私權」,只不過是一個藉口。司法部進一步指出,美國線上、雅虎以及微軟等其他搜尋引擎業者都已按照要求提供了搜尋資訊。最後,司法部表示,政府為案件所需,擁有向一切機構徵求資訊的正當權利,因此Google公司仍必須將要求的資料提出。