本文為「經濟部產業技術司科技專案成果」
網際社群服務的普及,如Face Book、Instagram、Twitter或網路論壇,將人與人之間的社群連結從實體拓展到虛擬,社群網路的蓬勃發展充分展現言論自由,人人皆以匿名方式藏身於社群網路的保護傘下盡情抒發己見,但相對也產生層出不窮的網路霸凌事件。 日本於修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》(特定電気通信役務提供者の損害賠償責任の制限及び発信者情報の開示に関する法律)前,遭受匿名網路霸凌的被害人若想對加害人提起損害賠償訴訟,須同時對社群網路服務業者及網路服務供應業者聲請禁止刪除資料假處分,被害人承擔巨大的程序成本,卻仍須承擔訴訟程序中,社群網路供應商因系統保存時效屆期而自動刪除加害人IP位置資料之風險。 為了遏止頻繁的網路霸凌事件,日本國會已於2021年4月21日表決通過修正《關於特定電子通訊服務業者損害賠償責任限制及使用者資訊揭示法》,將「請求揭露匿名網路霸凌者個人資料」由原本的假處分及通常訴訟程序修正為非訟程序,被害人僅須向法院提出聲請狀,如法院判斷該聲請可特定網路服務供應業者,被害人即可請求社群網路服務業者及網路服務供應業者提供匿名誹謗者(即加害人)的姓名、地址及網路登錄紀錄。另外,為避免IP位置資訊被刪除的風險,法院可於非訟程序進行中,先命社群網路服務業者禁止刪除該IP位置資訊,大幅推進被害人程序利益之保障。
瑞典首次針對ISP業者發出阻斷連線禁制令由於網際網路之普及造成違法侵權著作廣泛流通,迫使著作權利人將矛頭轉向ISP業者,請求法院對網路服務業者(以下簡稱:ISP)發出阻斷網路連線禁制令,使用戶無法接近侵權著作。 瑞典Svea法院(Patent- och marknadsöverdomstolen)於今年2月13日就一上訴案件中向ISP發出禁制令(föreläggande),推翻斯德哥爾摩地方法院(Stockholms tingsrätt)於前年11月27日之決定。成為瑞典法院第一次針對ISP業者發出阻斷網路連線禁制令之確定判決(Domen går inte att överklaga)。該案是由華納、新力、聯合音樂、北歐電影與瑞典電影中心聯合提起,請求法院命一瑞典ISP(Bredbandsbolaget)阻斷二個涉及著作權侵害之網站連結(The Pirate Bay, Swefilmer)。 本案原告於一審主張,被告ISP向其使用者提供網路連接到侵害著作權網站之行為,已構成侵害行為的參與(medverkar),據此請求法院發出禁制令以禁止被告繼續參與侵害行為。一審法院未採納原告請求,認為所謂參與必須是瑞典刑法客觀上對侵權行為人有幫助行為,而ISP單純提供其顧客網路連結到侵權網站並非參與侵權行為。惟上訴審Svea法院認為所謂著作權法上之參與侵權行為認定,需考量歐盟法(Infosoc-directivet)下之解釋。而依據歐盟法院現行實務認定,在歐盟資訊社會指令下(Infosocdirektivet 2001/29/EG),即使ISP只提供網路連結到侵權網站,仍得向ISP發出禁制令,非以刑法上對侵權行為人有幫助行為為要件。因此法院認定本案已具備發出禁制令之條件而推翻一審認定。 然而目前法院發出禁制令之作法仍存有諸多問題。其一,禁制令是否真得能夠達成使ISP用戶不接近違法內容之目的,其有效性仍待考驗。其二,法院禁制令是否需就阻斷措施為指定,或是可委由ISP自行決定,只要ISP能達成阻斷目的即可,目前此問題仍有爭論。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
英國氣候變遷委員會發布「2024年減排進度報告」,提出溫室氣體減量之優先執行政策建議英國氣候變遷委員會(Climate Change Committee)於2024年7月18日依據《氣候變遷法》(Climate Change Act)向議會提交「2024年減排進度報告」(Progress in Reducing Emissions 2024 Report)。該報告提出多項政府為達成溫室氣體減量目標應優先執行之政策建議,重點內容如下: 1.調整政策以排除尚未成熟的低碳發電部署相關措施及其社會成本,以降低電價。 2.針對上屆政府推遲化石燃料車輛銷售禁令、決定20%家戶毋須淘汰化石燃料鍋爐,及免除房東提升租屋能效之義務等政策,應迅速恢復推動。 3.移除阻礙熱泵、電動車充電樁及陸域風電等關鍵技術部署的行政障礙。 4.提出公部門建築去碳之完整多年期戰略計畫。 5.改善再生能源差價合約(contracts for difference)競標機制的設計與執行。 6.提供政策支持以加速產業電氣化,促進多數產業轉向使用電熱技術。 7.加強植樹造林及泥炭地復育。 8.確立大規模部署人為工程碳移除技術(engineered removals)的商業模式,以實現2030年,每年移除至少500萬噸二氧化碳目標。 9.就全國推動淨零轉型所需之勞工技能進行全面評估與規劃。 10.強化國家氣候變遷調適政策,設定明確且可衡量之目標,以作為其他重大政策之制定基礎。 總體而論,英國的溫室氣體減量目標正面臨難以達成的重大風險,政府應迅速採取行動,並優先執行氣候變遷委員會所提出之政策建議。