美國聯邦最高法院(Supreme Court of the United States)於2020年6月30日以8票對1票之決定,肯認網域名稱「booking.com」可取得聯邦商標註冊。
本案之爭點在於,「通用名稱.com(generic.com)」是否亦會被認定為通用名稱而無法取得商標註冊。過去美國專利商標局(United States Patent and Trademark Office, USPTO)認為,當通用名稱與通用頂級域名(如「.com」)組合時,所得到之組合仍會被認定具有通用性(generic),因為僅在通用名稱中加入「.com」,如同加入「公司」一詞,無法藉此傳達任何可識別來源之意義。就「booking.com」而言,由於 「Booking」一詞意指旅行預訂,「.com」一詞表示其為一個商業網站,故消費者觀諸「booking.com」此一用語,會認為其是提供旅遊住宿之線上預訂服務。且即便認為「booking.com」屬於描述性商標,其亦缺乏第二意義而無法註冊。
惟聯邦最高法院認為,因為同一時間僅有一個實體可占用一特定網域名稱,因此「generic.com」一詞可向消費者傳達與特定網站之關聯。且對於通用性之認定原則主要有三:首先,通用性係指商品或服務之類別,而非該類別之特定示例;其次,對於複合用語而言,其識別性之認定應以整體觀之,非個別隔離觀察;最後,應視用語之相關意涵對於消費者之意義而定。基於該等原則,「booking.com」是否具有通用性,取決於該用語是否整體上向消費者表示為線上旅館預定服務之類別,例如:消費者是否會認為另一家提供相似服務之Travelocity也是一種「booking.com」;但消費者並非以此種方式來認知「booking.com」用語,因此,由於「booking.com」對於消費者而言並非通用名稱,其未具通用性。
USPTO另認為基於政策考量,其反對如「booking.com」之「generic.com」之商標註冊,因此種商標保護將使商標權人對於其他應保持自由使用之相似文字擁有過度控制權,例如可能會妨礙競爭者使用「booking」用語或「ebooking.com」、「hotel-booking.com」等域名。聯邦最高法院指出,USPTO顧慮之情形其實也會出現於任何描述性商標。事實上,除非可能造成消費者混淆,競爭者之使用並不會侵害商標權。「booking.com」是識別性較弱的商標,較難導致消費者混淆,且booking.com公司亦自承「booking.com」之註冊不會阻止競爭者使用「booking」之用語來描述其之服務。因此,聯邦最高法院最終認定「booking.com」之註冊不會使商標權人壟斷「booking」此一用語。
本文為「經濟部產業技術司科技專案成果」
西班牙個資監管機關(Agencia Española de Protección de Datos, AEPD)於2022年5月3日增加健康和個人資料保護有關的關注領域。觀2021年,計有680件與健康資料相關之爭議案件,與2020年相比增長了75%,又因健康資料為特殊類型之個人資料,故更應嚴加保障。 該領域的內容適用於公民、資料控制者、資料保護專業人員、健康中心或製藥行業等,共分六小節: 一、第一小節概述了與健康資料有關的權利,解釋了歐盟一般個人資料保護規則(General Data Protection Regulation, GDPR)第9條及西班牙當地規範有關處理健康資料定義、如何行使醫療記錄近用權(Right to access),以及與醫學研究相關的問題,其中規定了患者在使用資料和臨床文件方面權利和義務、在近用權被拒絕情況下如何向AEPD申訴、臨床病史保留及刪除權利之限制等。 二、第二小節重點介紹AEPD公布的相關報告和指南,包括勞資關係中之個人資料保護指南,及有關臨床病史、臨床試驗等相關主題之報告。 三、第三小節則著重在AEPD於新型冠狀病毒肺炎(COVID-19)爆發後,製作大量與COVID-19相關之聲明文件及法律報告,故在此彙整相關資料,以協助落實個人資料之保障。 四、第四小節健康研究和臨床試驗,其中彙編了相關指南,以及規範臨床試驗和其他臨床研究以及藥物安全監視所涉個人資料保護行為準則。 五、第五小節講述與健康狀況有關之申訴、賠償紀錄部分,其中包括AEPD收到多項涉及已故患者直系親屬近用醫療記錄之權利或醫療專業人員非法獲取臨床病史和醫療記錄之投訴。 六、第六小節側重於醫療組織洩露個人資料議題,概述了資料控制者之義務以及為確保遵循GDPR而應採取之措施,另強調以特殊方式處理健康資料之活動,如電子健康紀錄、物聯網醫療所使用之行動裝置或雲端等存取設備,皆存在外洩之風險因子。
世界經濟合作暨發展組織(OECD)修正「隱私保護及個人資料之國傳輸指導指引」1980年09月發布的「隱私保護及個人資料之國傳輸指導指引」,當中的8大原則對個人資料保護的法制產生深遠的影響,但隨技術發展,資料傳遞所產生的風險遠較於1980年代來得複雜。2013年所發布的內容,風險管理及為全球資料流通的互動性為兩大主軸,因此,在指引中納入新的概念,包含1.國家隱私策略:有效的隱私法制是不可或缺的,但在今日國家應該將隱私保護放在更高的戰略位置、2.隱私管理程序:(以個人資料)為核心服務的機制應系統化的保護隱私、3.資料安全漏洞通知:涵蓋有權者及各別個體的通知。 在指引第一章附件的第三部份-責任的履行,增加資料控制者(data controller),應有管理程序以符合上述的原則,該管理程序需包含資料風險的評估、內部監控、通知主管機關等要求;第五個部份-國家實施則新增加隱私主管機關的設立、考量不同角色(如:資料控制者)所應遵循的行為、考量其它的配套措施,如技術、教育訓練等。 在OECD的成員國,如:日本,已開始向該國國內說明2013年版的指引,但亦有部分會員國,如:加拿大,由於指引涵蓋公部門及私部門,加拿大亦討論如何與該國的資訊近用法(Access to Information Act) 及隱私權法 (Privacy Act)建構一個完善的適用模式。指引對於未來國際資料傳輸及管理程序的建置,必然產生結構性的影響,值得持續關注。
日本2021年修正《個人資料保護法》,整合個資法體系日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。 為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。
英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險英國發布《AI保證介紹》指引,藉由落實AI保證以降低AI系統使用風險 資訊工業策進會科技法律研究所 2024年03月11日 人工智慧(AI)被稱作是第四次工業革命的核心,對於人們的生活形式和產業發展影響甚鉅。各國近年將AI列為重點發展的項目,陸續推動相關發展政策與規範,如歐盟《人工智慧法》(Artificial Intelligence Act, AI Act)、美國拜登總統簽署的第14110號行政命令「安全可靠且值得信賴的人工智慧開發暨使用」(Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence)、英國「支持創新的人工智慧監管政策白皮書」(A Pro-innovation Approach to AI Regulation)(下稱AI政策白皮書)等,各國期望發展新興技術的同時,亦能確保AI使用的安全性與公平性。 壹、事件摘要 英國科學、創新與技術部(Department for Science, Innovation and Technology,DSIT)於2024年2月12日發布《AI保證介紹》(Introduction to AI assurance)指引(下稱AI保證指引),AI保證係用於評測AI系統風險與可信度的措施,於該指引說明實施AI保證之範圍、原則與步驟,目的係為讓主管機關藉由落實AI保證,以降低AI系統使用之風險,並期望提高公眾對AI的信任。 AI保證指引係基於英國政府2023年3月發布之AI政策白皮書提出的五項跨部會AI原則所制定,五項原則分別為:安全、資安與穩健性(Safety, Security and Robustness)、適當的透明性與可解釋性(Appropriate Transparency and Explainability)、公平性(Fairness)、問責與治理(Accountability and Governance)以及可挑戰性 與補救措施(Contestability and Redress)。 貳、重點說明 AI保證指引內容包含:AI保證之適用範圍、AI保證的三大原則、執行AI保證的六項措施、評測標準以及建構AI保證的五個步驟,以下將重點介紹上開所列之規範內容: 一、AI保證之適用範圍: (一)、訓練資料(Training data):係指研發階段用於訓練AI的資料。 (二)、AI模型(AI models):係指模型會透過輸入的資料來學習某些指令與功能,以幫助建構模模型分析、解釋、預測或制定決策的能力,例如GPT-4。,如GPT-4。 (三)、AI系統(AI systems):係利用AI模型幫助、解決問題的產品、工具、應用程式或設備的系統,可包含單一模型或多個模型於一個系統中。例如ChatGPT為一個AI系統,其使用的AI模型為GPT-4。 (四)、廣泛的AI使用(Broader operational context):係指AI系統於更為廣泛的領域或主管機關中部署、使用的情形。 二、AI保證的三大原則:鑒於AI系統的複雜性,須建立AI保證措施的原則與方法,以使其有效執行。 (一)、衡量(Measure):收集AI系統運行的相關統計資料,包含AI系統於不同環境中的性能、功能及潛在風險影響的資訊;以及存取與AI系統設計、管理的相關文件,以確保AI保證的有效執行。 (二)、評測(Evaluate):根據監管指引或國際標準,評測AI系統的風險與影響,找出AI系統的問題與漏洞。 (三)、溝通(Communicate):建立溝通機制,以確保主管機關間之交流,包含調查報告、AI系統的相關資料,以及與公眾的意見徵集,並將上開資訊作為主管機關監理決策之參考依據。 三、AI保證的六項措施:主管機關可依循以下措施評測、衡量AI系統的性能與安全性,以及其是否符合法律規範。 (一)、風險評估(Risk assessment):評測AI系統於研發與部署時的風險,包含偏見、資料保護和隱私風險、使用AI技術的風險,以及是否影響主管機關聲譽等問題。 (二)、演算法-影響評估(Algorithmic-impact assessment):用於預測AI系統、產品對於環境、人權、資料保護或其他結果更廣泛的影響。 (三)、偏差審計(Bias audit):用於評估演算法系統的輸入和輸出,以評估輸入的資料、決策系統、指令或產出結果是否具有不公平偏差。 (四)、合規性審計(Compliance audit):用於審查政策、法律及相關規定之遵循情形。 (五)、合規性評估(Conformity assessment):用於評估AI系統或產品上市前的性能、安全性與風險。 (六)、型式驗證(Formal verification):係指使用數學方法驗證AI系統是否滿足技術標準。 四、評測標準:以國際標準為基礎,建立、制定AI保證的共識與評測標準,評測標準應包含以下事項: (一)、基本原則與術語(Foundational and terminological):提供共享的詞彙、術語、描述與定義,以建立各界對AI之共識。 (二)、介面與架構(Interface and architecture):定義系統之通用協調標準、格式,如互通性、基礎架構、資料管理之標準等。 (三)、衡量與測試方式(Measurement and test methods):提供評測AI系統的方法與標準,如資安標準、安全性。 (四)、流程、管理與治理(Process, management, and governance):制定明確之流程、規章與管理辦法等。 (五)、產品及性能要求(Product and performance requirements):設定具體的技術標準,確保AI產品與服務係符合規範,並透過設立安全與性能標準,以達到保護消費者與使用者之目標。 五、建構AI保證的步驟(Steps to build AI assurance) (一)、考量現有的法律規範(Consider existing regulations):英國目前雖尚未針對AI制定的法律,但於AI研發、部署時仍會涉及相關法律,如英國《2018年資料保護法》(Data Protection Act 2018)等,故執行AI保證時應遵循、考量現有之法律規範。 (二)、提升主管機關的知識技能(Upskill within your organisation):主管機關應積極了解AI系統的相關知識,並預測該機關未來業務的需求。 (三)、檢視內部風險管理問題(Review internal governance and risk management):須適時的檢視主管機關內部的管理制度,機關於執行AI保證應以內部管理制度為基礎。 (四)、尋求新的監管指引(Look out for new regulatory guidance):未來主管機關將制定具體的行業指引,並規範各領域實踐AI的原則與監管措施。 (五)、考量並參與AI標準化(Consider involvement in AI standardisation):私人企業或主管機關應一同參與AI標準化的制定與協議,尤其中小企業,可與國際標準機構合作,並參訪AI標準中心(AI Standards Hubs),以取得、實施AI標準化的相關資訊與支援。 參、事件評析 AI保證指引係基於英國於2023年發布AI政策白皮書的五項跨部會原則所制定,冀望於主管機關落實AI保證,以降低AI系統使用之風險。AI保證係透過蒐集AI系統運行的相關資料,並根據國際標準與監管指引所制定之標準,以評測AI系統的安全性與其使用之相關影響風險。 隨著AI的快速進步及應用範疇持續擴大,於各領域皆日益重要,未來各國的不同領域之主管機關亦會持續制定、推出負責領域之AI相關政策框架與指引,引導各領域AI的開發、使用與佈署者能安全的使用AI。此外,應持續關注國際間推出的政策、指引或指引等,研析國際組織與各國的標準規範,借鏡國際間之推動作法,逐步建立我國的AI相關制度與規範,帶動我國智慧科技產業的穩定發展外,同時孕育AI新興產應用的發展並打造可信賴、安全的AI使用環境。