美國聯邦最高法院(Supreme Court of the United States)於2020年6月30日以8票對1票之決定,肯認網域名稱「booking.com」可取得聯邦商標註冊。
本案之爭點在於,「通用名稱.com(generic.com)」是否亦會被認定為通用名稱而無法取得商標註冊。過去美國專利商標局(United States Patent and Trademark Office, USPTO)認為,當通用名稱與通用頂級域名(如「.com」)組合時,所得到之組合仍會被認定具有通用性(generic),因為僅在通用名稱中加入「.com」,如同加入「公司」一詞,無法藉此傳達任何可識別來源之意義。就「booking.com」而言,由於 「Booking」一詞意指旅行預訂,「.com」一詞表示其為一個商業網站,故消費者觀諸「booking.com」此一用語,會認為其是提供旅遊住宿之線上預訂服務。且即便認為「booking.com」屬於描述性商標,其亦缺乏第二意義而無法註冊。
惟聯邦最高法院認為,因為同一時間僅有一個實體可占用一特定網域名稱,因此「generic.com」一詞可向消費者傳達與特定網站之關聯。且對於通用性之認定原則主要有三:首先,通用性係指商品或服務之類別,而非該類別之特定示例;其次,對於複合用語而言,其識別性之認定應以整體觀之,非個別隔離觀察;最後,應視用語之相關意涵對於消費者之意義而定。基於該等原則,「booking.com」是否具有通用性,取決於該用語是否整體上向消費者表示為線上旅館預定服務之類別,例如:消費者是否會認為另一家提供相似服務之Travelocity也是一種「booking.com」;但消費者並非以此種方式來認知「booking.com」用語,因此,由於「booking.com」對於消費者而言並非通用名稱,其未具通用性。
USPTO另認為基於政策考量,其反對如「booking.com」之「generic.com」之商標註冊,因此種商標保護將使商標權人對於其他應保持自由使用之相似文字擁有過度控制權,例如可能會妨礙競爭者使用「booking」用語或「ebooking.com」、「hotel-booking.com」等域名。聯邦最高法院指出,USPTO顧慮之情形其實也會出現於任何描述性商標。事實上,除非可能造成消費者混淆,競爭者之使用並不會侵害商標權。「booking.com」是識別性較弱的商標,較難導致消費者混淆,且booking.com公司亦自承「booking.com」之註冊不會阻止競爭者使用「booking」之用語來描述其之服務。因此,聯邦最高法院最終認定「booking.com」之註冊不會使商標權人壟斷「booking」此一用語。
本文為「經濟部產業技術司科技專案成果」
韓國科學技術評估暨規劃研究院(Korea Institute of S&T Evaluation and Planning, KISTEP)於2023年5月3日發布〈強化企業創新活動之研發租稅優惠政策研究:以國家戰略技術研發企業為中心〉(A Study on R&D Tax Support Policy for Enhancing Corporate Innovation Activities:Focusing on National Strategic Technology R&D Firms,下稱本報告),提供政府擴大研發租稅優惠政策之建議,分述如下: (1)擴大適用稅額抵減之技術領域 為強化競爭力,各國陸續鎖定重要技術產業,擴大研發租稅優惠政策,故本報告建議韓國政府就稅額抵減範圍,從3大領域(半導體、蓄電池與疫苗),擴大至12大國家戰略技術領域,進而增加民間企業之研發補助。 (2)擴大適用研發稅額抵減之對象 由於韓國目前適用研發稅額抵減之對象,不包括負責研發之新創企業負責人及管理階層,故本報告建議韓國應考量稅額抵減制度之效果與制度公平性,擬定一套新方案,擴大可享受稅額抵減優惠的對象。 (3)調高中大型企業之稅額抵減率 本報告指出,激進式創新及專利被引證次數高的創新技術研發,大多由中堅企業及大企業所主導,故建議應研擬一套以中堅企業與大企業為對象,大幅調高可抵減稅額比率之方案。 (4)透過政策組合(Policy mix)以提高政策效益 本報告指出,當企業獲得研發補助時,其研發稅額抵減效果更為顯著,故建議政府研擬以企業為對象,採用研發稅額抵減與補助並行之優惠方式。 (5)集中對技術水準高的企業提供租稅優惠 本報告指出,研發稅額抵減效果侷限於技術水準高的企業。換言之,與將租稅優惠分散給予各企業,不如選定具有技術能力的企業,使其獲得更多的研發稅額抵減優惠。 (6)擴大開放式創新企業之租稅優惠 本報告指出,研發租稅優惠效果對執行開放式創新之企業更為顯著,故建議將執行「產–研」、「產–學」、「產–產」合作的開放式創新企業納入租稅優惠對象。
歐盟將修正公部門資訊再利用(PSI)指令2019年1月22日,歐盟執委會(European Commission)、歐洲議會(European Parliament)與歐盟理事會(Council of the EU)就修正「公部門資訊再利用指令」(The Directive on the re-use of public sector information,PSI Directive)的提案達成協議。歐洲議會則於4月4日通過提案,待歐盟理事會簽署正式的指令。 PSI Directive經過2003年制定(Directive 2003/98/EC)、2013年修正(Directive 2013/37/EU),於2017年為了履行指令規定的定期審查義務,召開了公眾線上諮詢,之後歐盟執委會根據諮詢結果及對指令的影響評估,於2018年4月25日通過修訂指令的提案,並於2019年1月達成協議。 此次修正將該指令更名為「開放資料與公部門資訊指令」(The Directive on the Open Data and Public Sector Information,以下稱新指令),預計能排除目前仍存在的公部門資訊取得障礙,並且要求將政府資助研究所產出的研究資料(publicly funded research data)也開放給公眾。此次修正的重點內容如下: 1、所有依據國家取用文件規定(national access to documents rules)下可取用的公部門資訊,原則上可以免費再利用,或者公部門可以收取為了提供、傳播資料所產出的費用,但該費用以不超過邊際成本(marginal costs)為限。這項改變,將使更多的中小企業和新成立公司能順利進入資料經濟市場。 2、新指令特別指出統計資料或地理空間資料屬於高價值資料集(high-value datasets),這些資料集具有高商業潛力,可以加速各種資訊產品或增值服務的產出,例如人工智慧。而新指令特別要求這些資料集應免費提供、使機器可讀,且透過應用程式介面(APIs)使他人能取用。但經評估後發現免費提供會造成市場競爭扭曲時,則不在此限。 3、關於公營事業及公共運輸所產生的有價值資料,不在現行PSI Directive規範範圍內,而各國對於是否必須提供資料有著不同的規定,但現在都必須依照新指令的規定使公眾可以免費再利用,不過仍可設定合理規費來收回相關行政費用。 4、有些公部門與私人企業制定了複雜的資料協定,導致公部門資訊被壟斷,新指令則要求各會員國應落實資訊透明,以及限制公部門與私部門訂立排除其他人可再利用公部門資訊的協定。 5、促進公部門資訊以動態即時資料方式發布,並透過使用者介面(APIs)使更多動態即時資料能被使用。而這也將使企業發展創新產品或服務,例如行動APP。 6、關於政府資助的研究,新指令將促進「政府資助研究而產出的研究資料」能更容易的被再利用,故各成員國被要求建立一致的再利用政策,使這些研究資料能透過資料庫(repository)被開放取用(open access),包含先前已經存入該資料庫的資料。 總而言之,本次修正將能夠降低中小企業進入市場的障礙,並增加公部門資訊的透明度和即時流通,也使公營事業資訊及政府出資研究所產出的研究資料能納入開放資料的範疇。
人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例人工智慧技術用於醫療臨床決策支援之規範與挑戰—以美國FDA為例 資訊工業策進會科技法律研究所 蔡宜臻法律研究員 2018年11月27日 壹、事件摘要 美國係推動人工智慧用於醫療服務的領航國家,FDA轄下的數位健康計畫(Digital Health Program)小組負責針對軟體醫療器材規劃新的技術監管模式,在過去五年中,該計畫發布了若干指導文件 ,嘗試為醫用軟體提供更為合適的監督管理機制。但由於指導文件並非法律,監管的不確定性依舊存在,因此近兩年 FDA推動修法並做成多項草案與工作計畫,望以更具約束力的方式回應軟體醫療器材最新技術於臨床之適用。當中最為重要的法制變革,便是2016年底國會通過之《21世紀治癒法》(21st Century Cures Act)。該法重新定義了醫用軟體的監管範圍,一般認為是對人工智慧醫用軟體的監管進行鬆綁,或有助於人工智慧醫用軟體的開發與上市。然而在新法實施近兩年以來,實務上發現人工智慧的技術特質,會導致在進行某些「臨床決策支援之人工智慧軟體」是否為醫療器材軟體之認定時,產生極大的不確定性。對此FDA也於2017年12月作成《臨床與病患決策支持軟體指南草案》(Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration),望能就部份《21世紀治癒法》及其所修正之《聯邦食品藥物化妝品法》(Federal Food, Drug, and Cosmetic Act, FD&C Act)[1]裡的規範文字提供更為詳細的說明。 本文望能為此項法制變革與其後續衍生之爭議進行剖析。以下將在第貳部分重點說明美國2016年頒布的《21世紀治癒法》內容;在第參部份則針對人工智慧技術用於醫療臨床決策支援所發生之爭議進行分析;最後在第肆部份進行總結。 貳、重點說明 2016年12月美國國會頒布了《21世紀治癒法》,在第3060節明確界定了FDA對數位健康產品(Digital Health Products)之管轄範圍,將某些類型的數位健康產品排除在FDA醫療器材(medical device)定義之外而毋須受FDA監管。此規定亦修正了美國《聯邦食品藥物化妝品法》第520節(o)項有關FDA排除納管之軟體類別之規定。 根據新修正的《聯邦食品藥物化妝品法》第520節(o)(1)項,美國對於醫用軟體的監管範疇之劃設乃是採取負面表列,規定以下幾種類型的軟體為不屬於FDA監管的醫用軟體: 行政管理目的[2];或 目的在於非關診斷、治療、緩解、預防或病症處置之健康維持或健康生活習慣養成[3];或 目的在於進行電子化的個人健康紀錄[4];或 目的用於傳輸、儲存、格式轉換、展示臨床研究或其他裝置資料與結果[5];或 同時符合以下四點之軟體: (1)不從體外醫療器材或訊號蒐集系統來讀取、處理或分析醫療影像或訊號[6]。 (2)目的在於展示、分析或印製病患醫療資訊,或其他醫療訊息(例如:偕同診斷之醫療研究、臨床處置指南)[7]。 (3)目的在於替醫療專業人員就疾病或症狀之預防、診斷或處置提供支持或臨床建議[8]。 (4)使醫師在使用該軟體時尚能獨立審查「臨床建議產生之基礎」,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議[9]。 雖然大多數被排除的類別相對無爭議,但仍有一部分引起法律上不小的討論,即《聯邦食品藥物化妝品法》第520節(o)(1)(E)項所指涉的某些類型之臨床決策支援軟體(Clinical Decision Support Software,以下簡稱CDS軟體)。 CDS軟體係指分析數據以幫助醫療手段實施者(例如:醫師)做出臨床決策的軟體。多數以人工智慧為技術基礎的醫療軟體屬於此一類型,比方病理影像分析系統。根據《21世紀治癒法》與《聯邦食品藥物化妝品法》,CDS軟體是否被排除在FDA的管轄範圍之外,取決於該軟體是否「使醫師在使用該軟體時尚能獨立審查『臨床建議產生之基礎』,因此醫師所做成之臨床診斷或決策,並非主要依賴該軟體提供之臨床建議」[10]。若肯定,則將不被視為FDA所定義之醫療器材。為使此一規定更加明確,FDA於2017年12月8日發布了《臨床與病患決策支持軟體指南草案》,該指南草案針對如何評估軟體是否能讓醫師獨立審查臨床建議產生之基礎進行說明。FDA表示該軟體至少要能清楚解釋以下四點[11]: 該軟體功能之目的或用途;及 預期使用者(例如超音波技師、心血管外科醫師);及 用於產生臨床建議的原始資料(例如患者的年齡和性別);及 臨床建議產生背後之邏輯或支持證據 後續方有機會被FDA認定係令醫療專業人員使用該軟體時,能「獨立審查」臨床建議產生之基礎。換言之,指南草案所提的四點,為FDA肯認醫師在使用軟體時尚能「獨立審查」之必要前提。除此之外,指南草案尚稱預期使用者必須能自己做成與軟體相同之判斷,並且要求「用於生成臨床建議與演算邏輯的原始資料必須可被預期使用者辨識、近用、理解,並為公眾可得」[12],進而方有機會符合《聯邦食品藥物化妝品法》第520節(o)(1)(E)(iii)之規定;若該軟體亦同時符合第520節(o)(1)(E)之其他要件,則有望被劃分為非醫療器材而不必受FDA監管。 由於規範內容較為複雜,指南草案亦提供案例說明。比方若一糖尿病診斷軟體是由醫生輸入患者參數和實驗室測試結果(例如空腹血糖、口服葡萄糖耐量測試結果或血紅蛋白A1c測試結果),並且該裝置根據既定臨床指南建議患者的病情是否符合糖尿病的定義,可被FDA認定為「非醫療器材」[13];而諸如分析電腦斷層、超音波影像之軟體,則仍維持屬於醫療器材[14]。 另需注意的是,《聯邦食品藥物化妝品法》在第520節(o)(3)(A)(i)項亦建立「彌補性納回(claw-back)」機制,FDA需遵守通知評論程序(notice-and-comment process)以便及時發現軟體可能對健康造成嚴重危害的風險,並隨時將之納回監管範疇中。同時FDA每兩年必須向國會報告醫療器材軟體的實施經驗[15]。 參、事件評析 《21世紀治癒法》頒布至今兩年,FDA已核准多個以人工智慧為技術核心的軟體,例如在2018年2月13日通過能自動偵測可疑的大血管阻塞(large vessel occlusion, LVO),並迅速通知醫師病人可能有的中風危險的臨床決策支援軟體:Viz.AI Contact application;又比如於2018年4月11日通過利用演算法分析由視網膜攝影機(Topcon NW400)所獲得的影像,快速篩檢糖尿病病人是否有必須由專業眼科醫師治療的視網膜病變的IDx-DR。 然而,在CDS軟體以人工智慧為技術核心時,現有的法規與監管框架依舊有幾點疑慮: 一、「理解」演算法? 根據新修正之《聯邦食品藥物化妝品法》,如果CDS軟體欲不受FDA監管,醫師的決策必須保持獨立性。目前規定只要該醫療產品「企圖」(intended to)使醫師等專業人員理解演算法即可,並不論醫師是否真正理解演算法。然而,若FDA肯認理解演算法對於執行醫療行為是重要的,那麼當CDS係基於機器學習產生演算法時,具體該如何「理解」就連開發者本身都未必能清楚解釋的演算法?有學者甚至認為,CDS軟體是否受到FDA法規的約束,可能會引導至一個典型的認識論問題:「我們是怎麼知道的?(How do we know?)」[16]。對此問題,我們或許需要思考:當醫師無法理解演算法,會發生什麼問題?更甚者,未來我們是否需要訓練一批同時具備人工智慧科學背景的醫療人員?[17] 二、如何要求演算法透明度? 指南草案所提之「清楚解釋臨床建議產生背後之邏輯或支持證據」以及資料來源為公眾可得、醫生對演算法使用的資料來源之近用權限等,被認為是FDA要求廠商應使CDS軟體之演算法透明[18]。但根據FDA指南草案公告後得到的反饋,醫療軟體廠商對此要求認為並不合理。廠商認為,應該從實際使用效益來審視人工智慧或機器學習軟體所提出的臨床建議是否正確,而不是演算法是什麼、怎麼產生[19]。 三、醫療專業人員之獨立專業判斷是否會逐漸被演算法取代?未來醫療軟體廠商與醫療專業人員之責任該如何區分? FDA目前的法規與指南並未直接回應此二問題,惟其對於不被列管之CDS軟體之規定係需使醫師並非主要依賴該軟體提供之臨床建議、醫師能自己做成與軟體相同之判斷。由反面解釋,即FDA肯認部份CDS軟體具備與醫師雷同之臨床診斷、處置、決策之功能,或能部份取代醫師職能,因此需受FDA監管。是故,醫師之專業能力與人工智慧演算法相互之間具有取代關係,已是現在進行式。惟究竟醫師的判斷有多少是倚靠人工智慧現階段尚無法取得量化證據,或需數年時間透過實證研究方能研判。往後,醫療軟體廠商與醫師之責任該如何區分,將會是一大難題。 肆、結語 隨著醫療大數據分析與人工智慧技術的發展,傳統認知上的醫療器材定義已隨之改變。雖然硬體設備仍然在診斷、治療與照護上扮演極為重要的角色,但軟體技術的進步正在重新改寫現代醫療服務執行以及管理模式。這些新產品及服務為醫療器材市場帶來活水,但同時也形成新的監管議題而必須採取適當的調整措施。美國FDA針對近年來呈爆炸性發展的醫療軟體產業不斷調整或制定新的監管框架,以兼顧使用者安全與新技術開展,並於2016年通過了極具改革意義的《21世紀治癒法》,且以此法修正了《聯邦食品藥物化妝品法》。 然而,新法實施後,關於個別醫用軟體是否納為不受FDA監管的醫療器材仍有法律認定上的灰色空間。舉例而言,倍受矚目的以人工智慧為核心技術的CDS軟體,在新法框架下似乎可能存在於監管紅線的兩側。根據新修正之《聯邦食品藥物化妝品法》,一CDS軟體是否屬於醫療器材軟體,關鍵在於醫師能否「獨立審查」從而「非主要依賴」軟體所提供之臨床建議。也由於此要件概念較為模糊,FDA後續在2017年發布《臨床與病患決策支持軟體指南草案》為此提供進一步解釋,然而仍無法妥適處理人工智慧機器學習技術所導致的演算法「該如何理解?」、「透明度該如何認定?」等問題。更甚者,從整體醫療服務體系納入人工智慧協助臨床決策診斷之趨勢觀之,未來醫療專業人員的獨立判斷是否會逐漸被演算法取代?未來人工智慧軟體與醫療專業人員之責任該如何區分?都是醞釀當中的重要議題,值得持續關注。 [1] 21 U.S. Code §360j [2] FD&C Act Sec. 520(o)(1)(A) [3] FD&C Act Sec. 520(o)(1)(B) [4] FD&C Act Sec. 520(o)(1)(C) [5] FD&C Act Sec. 520(o)(1)(D) [6] FD&C Act Sec. 520(o)(1)(E) [7] FD&C Act Sec. 520(o)(1)(E)(i) [8] FD&C Act Sec. 520(o)(1)(E)(ii) [9] FD&C Act Sec. 520(o)(1)(E)(iii) [10] “Enabling such health care professionals to independently review the bases for such recommendations that such software presents so that it is not the intent that such health care professional rely primary on any of such recommendations to make clinical diagnosis or treatment decisions regarding individual patient.” FD&C Act, Sec. 520(O)(1)(E)(iii) [11] FOOD AND DRUG ADMINISTRATION[FDA], Clinical and Patient Decision Support Software-Draft Guidance for Industry and Food and Drug Administration (2017), .at 8 https://www.fda.gov/downloads/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm587819.pdf (last visited Sep. 21, 2018) [12] 原文為 “The sources supporting the recommendation or underlying the rationale for the recommendation should be identified and easily accessible to the intended user, understandable by the intended user (e.g., data points whose meaning is well understood by the intended user), and publicly available (e.g., clinical practice guidelines, published literature)”, id, at 8 [13] FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [14]FOOD AND DRUG ADMINISTRATION[FDA], supra note 11 [15] 21th Century Cures Act, Sec. 3060(b) [16] Barbara J. Evans & Pilar Ossorio, The Challenge of Regulating Clinical Decision Support Software after 21st Century Cures. AMERICAN JOURNAL OF LAW AND MEDICINE (2018), https://papers.ssrn.com/sol3/Delivery.cfm/SSRN_ID3142822_code1078988.pdf?abstractid=3142822&mirid=1 (last visited Sep. 21, 2018) [17] Id. [18] Gail H. Javitt & J.D., M.P.H., ANESTHESIOLOGY, Regulatory Landscape for Clinical Decision Support Technology (2018), http://anesthesiology.pubs.asahq.org/article.aspx?articleid=2669863 (last visited Sep. 21, 2018) [19] REGULATIONS.GOV, Clinical and Patient Decision Support Software; Draft Guidance for Industry and Food and Drug Administration Staff; Availability(Dec. 8, 2017) https://www.regulations.gov/docketBrowser?rpp=25&po=0&dct=PS&D=FDA-2017-D-6569&refD=FDA-2017-D-6569-0001 (last visited Sep. 25, 2018)