因應5G通訊技術快速發展與關鍵應用逐漸普及之趨勢,美國國防部於2020年5月2日由部長批准「國防部5G戰略」(Department of Defense 5G Strategy,以下簡稱5G戰略);同月發布之公開版(unclassified)5G戰略,為美國軍方第一份公開發布的5G戰略性指導文件,主要內容包含指出國防部面對5G帶來的挑戰、設定5G技術發展目標、擬定5G發展行動計畫(lines of effort)等,以確保美國在軍事與經濟上的優勢地位。
5G戰略指出,5G技術對於維持美國軍事與經濟優勢至關重要,為關鍵戰略性科技(critical strategic technology)。5G技術為產業與軍事帶來重大變革的契機,同時也帶來對資通安全的挑戰,特別是由於美國潛在的競爭對手國家,正試圖在美國的關鍵合作夥伴國家的5G市場占據主導地位,使得5G基礎建設供應鏈成為競爭對手利用有害元件、惡意軟體或非法存取等方式入侵美國與其合作夥伴的破口,最終將損害美國的國家安全與利益。
因此美國國防部將鼎力協助美國與其合作夥伴提升5G技術力、提高對5G的風險意識至國安層級、開發保護5G基礎設施與技術之措施。具體行動計畫包含:一、藉由大量的實驗場域驗證5G應用,推動技術發展;二、掌握5G資安威脅情報與威脅,評估、識別資安風險採取必要措施,並採取零信任(Zero Trust)反覆驗證之資安模式;三、積極加入5G技術相關標準訂定與規劃5G國防政策;四、吸引國際組織、國家與相關產業的合作夥伴,積極溝通協調以維持美國與合作夥伴間的共同利益,協助美國的盟友與合作夥伴識別5G風險。
本文為「經濟部產業技術司科技專案成果」
企業界興建廠房未來若排放的二氧化碳過高,可以透過在國內外協助造林等方式來改善。 農委會日前組成農業森林議題工作小組,積極蒐集國內外相關資料,推廣植樹造林對溫室氣體減量策略及作法,並調查出更精確的碳吸存數據,作為未來碳交易等機制所需的基本資料。其初步估算出每種植一公頃森林可淨吸收七公噸二氧化碳的減量模式。未來將可配合碳交易機制,銷售給需進行二氧化碳減量的業者,農委會已先選定台糖進行合作,未來將推廣至業者的平地造林。 農委會表示,目前的碳交易模式分為兩種,一種是進行國內外的造林,來換取本國二氧化碳的排放量,像是美、日等國,即在中國大陸廣泛種植樹木來換取更多的業者投資,或是在本國境內種植更多的林木,這種交易屬於碳交易。第二種是在本國境內進行溫室氣體的減量,再將減量超過的部分賣給其他國家,亦即清潔費的交易,也屬於廣義的碳交易行為。 為推動我國建立碳交易機制,農委會也已著手進行造林的碳吸存研究,農委會表示,未來碳交易機制建立後,業者興建廠房若排放的二氧化碳超過標準,可以透過協助國內外造林,或付出造林費用給協助造林的單位。在建立交易模式後,未來若企業界興建一座廠房所造成的二氧化碳排放量超過七公噸,即可透過支付一公頃造林費用的方式,達到平衡的效果。
美國醫療保健領域對新興資料儲存系統理論「資料湖泊」(Data Lake)的應用在現今資訊流通快速蓬勃發展的時代,巨量資料(Big Data)帶來效率與生產力等龐大效益已無庸置疑。相較於將資料以「資料倉儲」(Data Warehouse)模式儲存,「資料湖泊」(Data Lake)被廣泛視為巨量資料快速演進的下一步。 美國的醫療保健領域為因應巨量資料發展並提升醫療保健系統的透明度與有責性,美國醫療保險與補助中心(Centers for Medicare & Medicaid Services, CMS)於2013年底建立CMS虛擬研究資料中心(Virtual Research Data Center, VRDC),讓研究員能夠以安全有效率的方式取得並分析CMS的龐大醫療保健資料。此種資料倉儲模式會對進入的資料預先分類,並整合為特定形式以指導後續分析的方式。缺點在於為讓資料更易於分享,會進行「資料清理」(data cleaning)以檢測及刪除不正確資訊並將其轉換成機器可讀取格式,各資料版本會被強制整合為特別形式,但資料清理和轉換的過程會導致明顯的數據流失,對研究產生不利的限制。有鑑於此,為更有效益的應用巨量資料,Pentaho首席技術官James Dixon提出新的資料儲存理論—資料湖泊(Data Lake),此概念於2011年7月21日首先被討論於美國《富士比》雜誌中,目前在英美國家公部門和民間企業間已被熱烈討論。 與Data Warehouse最大不同在於Data Lake可包含「未被清理的資料」(unclean data),保持其最原始的形式。故使用者可取得最原始模式的資料,減少資源上處理數據的必要,讓來自全國各政府機關的資料來源更易於結合。Data Lake主要有四點特性:1.以低成本保存巨量資料(Size and low cost)2.維持資料高度真實性(Fidelity)3.資料易取得(Ease of accessibility)4.資料分析富彈性(Flexible)。儲存超過百萬筆病患資料的加州大學歐文分校醫療中心(UC Irvine Medical Center)即以Hadoop架構為技術建立了一個Data Lake,該中心能以最原始的形式儲存各種不同的紀錄數據直到日後需要被分析之時,可協助維持資料的來源與真實性,並得以不同形式的醫療數據進行分析項目,例如患者再住院可能性的預測分析。 但相對的Data Lake在安全性和檢視權限上也有一定的風險,尤其是醫療保健領域,因為這意味著病患的資料在個資生命週期裡隨時可被取得,因此資訊的取得應被嚴密控制以維持各層級的安全與保障,在建立安全的Data Lake之前,必須審慎考慮誰有資訊檢視權限以及透過什麼媒介取得Data Lake中的資料等問題。
美國FDA於20250617宣布將試行「局長國家優先審查券」COVID-19疫情後美國開始積極處理藥品供應鏈脆弱性,為提振本土製造與審查效率,美國食品及藥物管理局(Food and Drug Administration, FDA)於2025年6月17日宣布將試辦「局長國家優先審查券」(Commissioner’s National Priority Voucher, CNPV)。該計畫依據《聯邦食品、藥品與化妝品法》(The Federal Food, Drug, and Cosmetic Act, FFDCA)與《公共衛生服務法案》(Public Health Service Act, PHSA)授權。CNPV將不同審查分組集中處理,並結合資料預先提交機制,力求將一般10-12個月的審查流程壓縮至1-2個月,試辦期為一年,並與現行優先審查及優先審查券(Priority Voucher, PRV)機制獨立並行。 內容要點: 1.遴選資格:符合任一「國家優先」標準之廠商 因應公衛危機:如廣效疫苗開發 帶來潛在的創新療法:超越突破性療法認定成效的新型療法 解決未滿足公共衛生需求:如罕病或缺乏療效標準治療之疾病 提升美國供應鏈韌性:如將藥品研發、臨床、生產遷至美國 提高可負擔性:將美國藥價降至最惠國藥價,或減少下游醫療費用 2.使用與要求: 適用階段:可於申請臨床試驗或申請藥證等階段啟用,亦可先領「未指名券」保留資格。 文件要求:需提前60天提交完整藥品化學製造與管制(Chemistry, Manufacturing, and Controls, CMC)與仿單預審,如遇重大缺件FDA得延長審查期限。 有效性:2年內使用,逾期失效;不可轉讓,但併購案中可沿用。 CNPV透過團隊同日決策,有望在FDA人力縮減背景下縮短審查時程。並強調國家利益,可能優先惠及具戰略價值及在美投資的大型藥廠;對我國優化藥品審查流程與吸引製造投資等目標,亦具重要參考價值。
美國加州機動車輛管理局3月10日發布無人駕駛車輛管理方案無人駕駛汽車、電腦駕駛汽車或輪式移動機器人,皆屬自動化載具的一種,具有傳統汽車的運輸能力。而作為自動化載具,自動駕駛汽車不需要人為操作即能感測其環境及導航。目前無人車仍未全面商用化,大多數均為原型機及展示系統,部份可靠技術才下放至商用車型,但有關於自駕車逐漸成為現實,已經引起了很多有關於道德與法律上的討論。 無人駕駛車輛若能夠變得商用化,將可能對整體社會造成破壞性創新的重大影響。然而,在商品化之前的實際道路測試是自動駕駛車輛開發過程非常重要的一環,是否允許自動駕駛車輛實際上路測試為各地交通主管機關之職責。因此,為了保障公共安全與推廣創新,為美國加州機動車輛管理局(Department of Motor vehicles ,下稱加州DMV)便自2015年12月公布無人駕駛車輛規範草案後,歷經2016年9月的修正,於2017年3月10日正式公布無人駕駛車輛管理規範。 美國加州申請自動駕駛車輛上路測試規定係依據加州汽車法規 (California Vehicle Code)38750 中之條款 3.7所訂定,依照加州DMV規畫,在社區內和高速公路上進行測試的自動駕駛車,仍需與傳統汽車一樣,具有方向盤與煞車踏板,而且駕駛座上亦需有人隨時待命應付緊急情況發生。此外,無人駕駛車輛尚必須有人進行遠距監控,並且能在緊急情況發生時安全停靠路邊。 截至2017年3月8日,已有27家公司獲得加州DMV許可,在道路上測試無人駕駛車輛,且這些車輛迄今只造成少數事故。加州DMV公布無人駕駛車輛管理規範後,還將於2017年4月24日舉行公聽會持續蒐集意見,研擬規範修改內容,以符合實際需求。 人駕駛車輛是汽車產業未來發展的趨勢之一,我國於不久的將來亦可能面臨有無人駕駛車輛在國內進行實際道路測試的需求。然而,我國地狹人稠,交通狀況複雜,且國人守法觀念尚有加強空間,確也增添無人駕駛車輛在國內道路測試的挑戰性,以及主管機關於受理測試申請之困難度。因此,加州DMV所公布之無人駕駛車輛管理規範之後續發展,值得吾人持續關注。