德國聯邦卡特爾署(Bundeskartellamt)於2020年7月9日公布,將針對電動車公共基礎設施產業進行調查,以釐清目前市場相關競爭法問題。
聯邦卡特爾署署長Andreas Mundt表示,建立全國性的充電基礎設施是德國電動車成功的先決條件之一,目前電動車充電基礎設施產業尚處於早期市場發展階段,因此,釐清市場是否有不正競爭問題,方能使電動車充電基礎設施布建能迅速擴張。在公共場所充電的條件和價格,也將影響消費者是否決定改用電動車。然而在目前市場發展階段時,已收到越來越多關於充電站價格和條件的投訴。
根據聯邦政府的計畫,2030年前德國將於全國範圍內布建大規模的充電基礎設施,其中包括公用的充電基礎設施。雖然充電站之布建及營運,不適用例如高壓電網擴建加速法、電網擴張法等與電網相關法規之適用。但可依德國不正當競爭防止法(Gesetz gegen den unlauteren Wettbewerb, UWG)拘束該領域可能存在的競爭法議題。除了應確保非歧視性地近用充電站外,更應研擬充電站相關使用條款,以確保充電站能正常營運。此外,並應研究城市及地方政府是否有提供合適的充電站位置,及其對充電站營運商之間的競爭影響。另外,聯邦高速公路上充電站之市場競爭狀況亦為聯邦卡特爾署關注的議題。
聯邦卡特爾署將於兩個調查階段中,向利害關係人進行產業調查。第一階段,將確定公共收費充電基礎設施的建設狀況,以及城市及地方政府和其他參與者,在規劃和提供充電站合適位置的現行作法。並在此基礎上,進行第二階段深入調查,特別針對有關移動服務提供商和使用者近用充電站的問題。
本文為「經濟部產業技術司科技專案成果」
德國經濟及氣候保護部科學顧問委員會於2023年2月8日公布《向氣候中和產業轉型:綠色領導市場和氣候保護協議》(Transformation zu einer klimaneutralen Industrie: Grüne Leitmärkte und Klimaschutzverträge)報告,擬透過綠色領導市場(Grüne Leitmärkte)和氣候保護協議(Klimaschutzverträge)兩種工具措施,在基礎⼯業中⼤規模推廣氣候中和⽣產技術。 科學顧問委員會指出,目前僅靠碳定價已無法調整在氣候保護面向的市場失靈問題,加上基礎工業(例如鋼鐵、水泥、合成氨等)的氣候友好型技術投資上缺乏經濟效益,因此政府需要採取額外措施來實現基礎工業的氣候中和。 綠⾊領導市場則是國家建立或支持以氣候中和⽅式⽣產的原物料(例如綠⾊鋼鐵)的市場,政府採購中可優先使⽤綠⾊原料,也可以透過監管措施,規定私⼈和企業在⼀定範圍內只能使⽤含有⼀定⽐例綠⾊原料的產品。氣候保護協議則是國家與企業間,就⽣產氣候友好型產品簽訂契約,保證企業將獲得15年的補償⾦,以補償採行氣候中和⽣產術所產生較⾼的成本,同時亦保護企業免受碳定價波動和其他⾵險的影響。
英國公布「智慧聯網挑戰與機會」政策報告及制訂「智慧聯網科際研究路徑圖」對於智慧聯網(IoT)推動政策,英國主要係以科技策略委員會(Technology & Strategy Board)下設智慧聯網特別關注研究小組(IoT Special Interest Group, IoT SIG)為平台,討論智慧聯網(IoT)相關資訊及規劃推動政策。英國智慧聯網特別關注研究小組2013年5月公布「智慧聯網的挑戰與機會」(IoT Challenges and Opportunities - Final Report)報告,對於智慧聯網(IoT)服務的創新發展提出建議,包括應推動:(1)建立操作互通性(interoperability)的框架(2)以人為本的設計(People-centred design)(3)創造強健的智慧聯網(IoT)平台(4)頻譜使用模式的無線電技術等相關政策。 再者,英國智慧聯網特別關注研究小組在2月15日也發表「智慧聯網科際研究路徑圖」(A Roadmap for Interdisciplinary Research on the Internet of Things) 最後報告,內容包含四個子報告,分別對科技、文化創意及設計、經濟及商業、社會科學討論智慧聯網(IoT)未來研究的方向。在「社會、法律及道德子報告」(A Roadmap for Interdisciplinary Research on the Internet of Things: Social Science)中提及應注意的研究問題,包括:隱私及資料保護、自主選擇性(choice)、控制(control)、智慧型個人隨身裝置的社會議題、安全(security) 、所有權及智慧財產權、公眾安全及保護、資料保留(data retention)、行動的停止、過時資料的處理、以及巨量資料、納入公眾意見、服務品質等等。 並且,英國「社會、法律及道德子報告」中透過情境分析的方式,試圖將所提及之相關社會、法制及道德議題盧列出來,希望能在此基礎下進行更系統性的研究探討,以更廣泛含攝模式,嘗試從社會、法律及道德各層面,探究智慧聯網(IoT)相關重要議題。
美國國家標準暨技術研究院發布「人工智慧風險管理框架:生成式AI概況」美國國家標準暨技術研究院(National Institute of Standard and Technology, NIST)2024年7月26日發布「人工智慧風險管理框架:生成式AI概況」(Artificial Intelligence Risk Management Framework: Generative Artificial Intelligence Profile),補充2023年1月發布的AI風險管理框架,協助組織識別生成式AI(Generative AI, GAI)可能引發的風險,並提出風險管理行動。GAI特有或加劇的12項主要風險包括: 1.化學、生物、放射性物質或核武器(chemical, biological, radiological and nuclear materials and agents, CBRN)之資訊或能力:GAI可能使惡意行為者更容易取得CBRN相關資訊、知識、材料或技術,以設計、開發、生產、使用CBRN。 2.虛假內容:GAI在回應輸入內容時,常自信地呈現錯誤或虛假內容,包括在同一情境下產出自相矛盾的內容。 3.危險、暴力或仇恨內容:GAI比其他技術能更輕易產生大規模煽動性、激進或威脅性內容,或美化暴力內容。 4.資料隱私:GAI訓練時需要大量資料,包括個人資料,可能產生透明度、個人資料自主權、資料違法目的外利用等風險。 5.環境影響:訓練、維護和運行GAI系統需使用大量能源而影響碳排放。 6.偏見或同質化(homogenization):GAI可能加劇對個人、群體或社會的偏見或刻板印象,例如要求生成醫生、律師或CEO圖像時,產出女性、少數族群或身障人士的比例較低。 7.人機互動:可能涉及系統與人類互動不良的風險,包括過度依賴GAI系統,或誤認GAI內容品質比其他來源內容品質更佳。 8.資訊完整性:GAI可能無意間擴大傳播虛假、不準確或誤導性內容,從而破壞資訊完整性,降低公眾對真實或有效資訊的信任。 9.資訊安全:可能降低攻擊門檻、更輕易實現自動化攻擊,或幫助發現新的資安風險,擴大可攻擊範圍。 10.智慧財產權:若GAI訓練資料中含有受著作權保護的資料,可能導致侵權,或在未經授權的情況下使用或假冒個人身分、肖像或聲音。 11.淫穢、貶低或虐待性內容:可能導致非法或非自願性的成人私密影像或兒童性虐待素材增加,進而造成隱私、心理、情感,甚至身體上傷害。 12.價值鏈和組件整合(component integration):購買資料集、訓練模型和軟體庫等第三方零組件時,若零組件未從適當途徑取得或未經妥善審查,可能導致下游使用者資訊不透明或難以問責。 為解決前述12項風險,本報告亦從「治理、映射、量測、管理」四大面向提出約200項行動建議,期能有助組織緩解並降低GAI的潛在危害。