日本政府規制改革推進會議係由內閣府發布政令所成立,具跨部會協調性質、推動日本法規調適之委員會,規制改革推進會議於今(2020)年7月2日向安倍晉三首相報告,從去年10月起歷經8個月審議規制改革項目的審議結果後,最新版「規制改革實施計畫」於7月17日通過閣議決定。規制改革實施計畫中關於農林水產領域「促進智慧農業普及」項目,除了促進無人機、自動行走機普及、農作物栽培設施設立而調和相關規定外,「農業數據利活用」項目首見於規制改革實施計畫,實施項目包括以下四項:
日本政府為加速智慧農業落地普及,藉由調和農林水產省補助金規定促進農業數據流通運用,保護農民數據使用權利,且將農業數據擴散利用於公共事務,凸顯日本政府對於農業數據保護與運用的重視,值得我國做為借鏡。
註1:補助金不限於「有關補助金等預算執行適正化相關法律[昭和 30 年法律第 179 號]」(補助金等に係る予算の執行の適正化に関する法律[昭和 30 年法律第 179 号])的補助金,包括其他交付金、委託費。
「本文同步刊登於TIPS網站(https://www.tips.org.tw)」
英國在2019年7月11日於《2019-2020年財務法案》(Finance Bill 2019-20)之中,提出「數位服務稅」(Digital Services Tax)草案。《2019-2020年財務法案》已於2019年7月22日獲得御准(Royal Assent),並於2020年4月1日開始向跨國數位服務業者課徵2%數位服務稅。英國數位服務稅的主管機關「稅務海關總署」(HM Revenue and Customs)指出:「數位服務稅並不會影響個人,課徵的對象為大型跨國數位服務業者,如搜尋引擎(Search Engine)、社交媒體服務(Social Media Service)、線上購物平台(Online Marketplace),包含在這些平台上營運的廣告。」英國課徵2%數位服務稅的對象為於全球營收超過5億英鎊,且2,500萬英鎊的營收來自英國用戶(UK User)的數位服務業者,其中,首次於英國營收達2,500萬英鎊者,可以免課徵一次。所謂英國用戶指的是慣居於英國之人(Normally Located in the UK),只要交易的其中一方為英國用戶,則整個交易收益視為應課徵數位服務稅之營收。營收計算方式涵蓋任何與平台營運相關的商業行為,所有來自於英國用戶的營收均會被列入計算,至於廣告收益則是以投放目標客群為英國用戶作為計算 因應全球化與數位化,七大工業國組織(G7)、二十國集團(G20)、經濟合作暨發展組織(OECD)相繼推出數位服務稅作為永續的策略。英國原先亦不存在數位服務稅相關法制,直至2019年7月11日才於《2019-2020年財務法案》提出,並開始徵詢公眾意見。英國政府期待透過數位服務稅的政策,讓稅務課徵更加公平、增進公共利益。目前,英國政府並沒有明定數位服務稅的落日條款,然而英國政府於政策報告書中說明,假設國際上有更完善的解決方案,即會停止數位服務稅的課徵。
美國上訴法院:行為人不得以「主觀上對犯罪行為之無意識」阻卻著作權之侵害在電腦與網際網路普及與便利的今日,只要上網搜尋一些特定軟體,非常容易就能下載侵害智慧財產權的音樂或是影片,這樣的行為當然是非法的,但在美國出現爭議,若未成年人利用電腦非法下載,可否用「不知道這是犯罪行為」來抗辯侵權呢? 美國就發生了這樣的案例,現年22歲Whitney Harper,於2004年被美國唱片業協會(The Recording Industry Association of America,RIAA)控告其使用Kazaa分享軟體,下載阿姆(Eminem)、瑪麗亞凱莉(Mariah Carey)等37首歌曲,並將該37首歌曲透過線上分享軟體讓其他使用者亦得下載,RIAA認為此行為侵害了這些歌曲的智慧財產權,要求Whitney Harper每首歌曲需付750美元懲罰性賠償。 在訴訟中,唱片公司主張,其已於每張CD上貼上警示標籤;而Whitney Harper則抗辯自己不應該負擔如此高的罰款,係因當時她只有16歲,沒有意識到未經授權下載歌曲是違法行為,且認為下載就像利用網路聽收音機節目一樣,應該是免費的,認為自己無罪。 雖然有一些法官支持Whitney Harper的爭辯,不過第五巡迴上訴法院認為,無論Whitney Harper是否知悉其下載音樂之行為係屬違法,只要唱片公司有公告未經授權之重製行為即侵害著作權,與被告Whitney Harper之主觀意識無關。最後第五巡迴上訴法院確認Whitney Harper有罪,並判定 Whitney Harper共需賠償27,750美元。 Whitney Harper不滿其判決結果,向美國最高法院提起上訴,但法院拒絕其上訴。
美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用? 資訊工業策進會科技法律研究所 2025年06月04日 美國著作權局於2025年5月發布著作權與AI第三部分報告之預出版本 (Copyright and Artificial Intelligence Part 3: Generative AI Training pre-publication version)[1],該報告重點為生成式AI訓練資料與著作權之關係,彙整各方意見並分析現行法制之挑戰及修改方向,目前發布之版本為預出版本,該報告說明將於近期發布最終確認版,預期其結論與實質內容並不會有修改。 壹、事件摘要 美國著作權局自2023年起即開始對AI所引發之著作權法律及政策問題進行研究,同年8月著作權局發布著作權及AI諮詢通知(Comments on Artificial Intelligence Notice of Inquiry, NOI),徵集各界對AI著作權議題之意見,著作權局亦針對相關議題舉辦多場公聽會及研討會協助意見之蒐集[2]。NOI發布後蒐集到之意見經著作權局整理分析,於2024年7月起發布AI著作權報告,第一部分為數位仿造,第二部分於2025年1月發布為就AI作品之著作可保護性之分析,而同年5月所發布之第三部分則聚焦於生成式AI之訓練。 生成式AI於訓練過程可能大量使用受著作權保護之作品,此份報告針對訓練過程可能涉及之著作權問題進行分析,主要說明AI模型訓練過程中使用受著作權保護作品是否可構成合理使用。 貳、重點說明 一、生成式AI模型訓練及模型權重對重製權之侵害 使用受著作權保護作品進行AI模型訓練涉及著作權中之重製,除非開發者能提出授權或其他合理抗辯如合理使用等,否則可能對一項或多項著作權利構成初步侵權(Prima Facie Infringement)。AI開發者於模型訓練階段會進行多次作品複製,包含下載作品、於儲存媒介間轉換、將作品進行格式化或製作副本等[3],模型訓練過程中暫時複製之作品亦有可能因其存在於時間足夠而構成重製權之侵害[4]。 在特定情形下,模型權重(model weights)[5]之複製亦可能構成重製權之侵害。訓練過程可能使模型權重包含著作權作品,而若第三方複製了包含著作權作品之模型權重,即便其未參與模型之訓練,亦可能構成初步侵權[6]。若模型能在未經外部輸入之情形下產出與訓練範例相似之內容時,表示此範例必以某種形式存在於模型權重中,故此模型權重之複製極有可能侵犯著作重製權[7]。換言之,不僅開發者有可能因模型權重之複製侵害著作權人之權利,部署、使用等第三方若複製模型權重亦有可能構成對重製權之侵害。 著作權局指出,模型權重究竟是否會構成重製權或甚至衍生作品之侵權,須判斷該模型權重是否保留與作品受權利保護部分實質相似之內容,僅有在實質相似之情形下,模型權重之複製才可能構成侵權[8]。 二、合理使用 對著作權作品之合理使用可做為作品重製權的抗辯,著作權局於報告中就不同因素分析AI使用著作權作品進行訓練是否得主張合理使用。AI於訓練過程中會有多次複製行為,惟在判斷AI模型訓練是否為對作品之合理使用,仍須視整體使用情境進行判斷[9]。 (1) 作品轉化性須視模型目的及佈署判斷 報告中分析作品之轉化性(transformativeness)[10],AI訓練使用作品是否具有轉化性並非絕對,而是依據模型最終之功能及佈署有程度上之區別,須依個案判斷。若模型之訓練目的為用於研究或封閉系統,則該模型具高轉化性;若其目的是生成與訓練用作品實質相似之結果時,不具轉化性。多數模型之轉化程度會落在前述兩極端之中間,如模型使用特定類型之作品進行訓練,用以生成使用目的與原作相同之內容時,即便其生成內容未有實質相似,頂多僅為有限度之轉化(modestly transformative)[11]。AI開發商得於其系統設置防護措施,限制模型複製受著作權保護作品之節錄內容,使生成內容之目的與原作品不同,此措施能使模型訓練更具轉化性[12]。 有論者認為,使用受著作權保護作品進行AI模型訓練並非出於表達目的,且近似人類學習,因此實質上應是具有轉化性的,著作權局否定了前述兩種說法。報告中說明,語言模型於訓練時所吸收的內容包含文句、段落及文件之排列選擇,並非單純僅吸收其單字含意,且所生成之模型是被用作創造表達性內容,故不得謂AI模型為非表達性目的[13]。其次,針對人類學習觀點,報告首先闡明,學生基於學習目的亦不得以合理使用為由複製整本著作,因此人類學習並不得直接作為合理使用之抗辯。生成式AI之訓練能迅速分析並生成完美之作品,此非如同人類經學習後會產出具個別人格特質之結果,故著作權局不同意AI模型之訓練為與人類學習相同具有轉化性之論點[14]。 (2) 受著作權保護作品之表達性 AI訓練所使用之受著作權保護作品若具較高創作或表達性,如小說、電影等,其著作權比其他作品如電腦編碼等功能性作品更接近著作權之保護核心。而AI模型訓練來源多元,因此判斷上仍須視個案模型及作品而定。 (3) 使用作品之合理比例 AI模型訓練需大量複製受著作權保護作品,於判斷其複製比例是否合理時,係判斷模型訓練所複製之部分對於受著作權保護作品之數量及重要性使否合理[15]。作品使用之合理性,須考量重要性以及數量,若模型僅使用小部分作品做訓練,但該部分為著作權作品之核心部分,此使用並不一定合理。 在使用完整作品層面,生成式AI較一般搜尋引擎更不具合理性,生成式AI所提供之資訊並非僅限於其訓練資料庫中所複製作品資料。然而,許多生成式AI之訓練方式必須使用完整作品進行訓練,因此,著作權局指出,雖開發者使用完整作品進行訓練與合理使用相悖,但若其訓練具有轉化性目的(transformative purpose),並且有必要透過大量作品之訓練以提升模型效能時,則使用整部作品進行訓練可能被認為合理[16]。換言之,使用完整作品進行訓練合理與否須連同其使用必要性及訓練目的一併考量。 (4) 影響原作品之潛在市場或價值 報告中點出三項生成式AI訓練可能造成的市場危害。 A 銷售損失(lose sale):權利人因潛在消費者選擇AI複製創作取代原作,而失去收入。 B 市場稀釋 (market dilution):AI生成內容之速度以及規模對訓練資料中同類作品之市場造成稀釋風險,原作者將更難銷售其作品亦將使消費者更難找到真人創作之作品[17]。AI所生成風格相似之作品亦會導致市場稀釋,風格非為著作權所保障之方為,惟若AI生成與作品風格相似之內容,即便未有實質相似,但消費者可能因此難以分辨AI創作與真人作者,將使AI作品與原作者之作品於市場上直接競爭而影響原市場[18]。 C 喪失授權收入機會 (lost licensing opportunities):權利人本可就其作品於市場上有授權收入之機會,但因AI未經授權使用作品進行訓練而喪失該部分收入[19]。 三、 授權使用 對於AI自願授權之情形於近年越來越普遍,報告亦肯認自願授權之可行性,雖自願授權可行,且已有開發商開始實施,惟對於完全滿足AI產業之需求仍存有疑義[20]。該報告認為,即便現階段自願性授權仍為發展中之制度,但該制度確實能避免使用著作權作品之不確定性。著作權局認為應讓自願性授權制度於授權市場於無政府干預情形下繼續發展,若未來於特定類型作品中出現失靈情形時,再考慮進行擴大集體授權等干預措施[21]。 參、事件評析 AI訓練使用著作權保護作品是否可以合理使用作為抗辯為近年AI發展下著作權高度討論問題之一。目前美國各地法院中有40多件相關案件正在進行審理,然就此報告之結論觀之,其並未對AI訓練是否可作為合理使用給予統一解答,合理使用與否仍須視個案而定。如同報告結論所提及,AI訓練過程中,使用受著作權保護作品可能具有轉化性,但是否足以構成合理使用,仍須視其所使用之作品、來源以及目的等個案因素而定[22]。AI訓練於著作權仍存在一定程度之不確定性。 值得注意的是,雖報告並未明示AI訓練使否為合理使用著作權作品,惟其立場似乎更偏向有利於著作權利人。例如報告中於轉化性認定具有灰色地帶,開發商是否能主張合理使用仍需於後續由法院個案認定。此外,報告中提及市場稀釋理論,目前尚未有法院採用,對合理使用之認定較為嚴格,即使未有實質相似之生成內容亦有可能因影響市場競爭被視為非合理使用,可見該理論對著作權利人之權利保障。 同時著作權局亦正向看待產業界透過自願性授權進行作品訓練之方法,雖該制度於AI訓練上尚未為一完善制度,但確實地授權制度能同時促進產業發展並保護著作權[23]。目前實務上亦是以此種作法解決合理使用之困境,但授權制度仍有待市場持續發展完善制度以確保能符合AI訓練之需求。 美國著作權局之報告雖對AI使用著作權保護作品進行訓練進行分析及說明,惟其結論仍是認為判斷上需依照個案分析。目前國際上尚未有對AI合理使用之實際定論,自願性授權仍為產業界所使用之方法。我國著作權法亦未對AI訓練之合理使用有說明,國際上將會如何發展仍有待觀察。 資策會科法所創智中心致力於著作權相關科技法律研究,本中心將持續關注相關議題並更新動態。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 [1]U.S. Copyright Office Copyright and Artificial Intelligence, Part 3: Generative AI Training pre-publication version, https://www.copyright.gov/ai/Copyright-and-Artificial-Intelligence-Part-3-Generative-AI-Training-Report-Pre-Publication-Version.pdf [2]U.S. Copyright Office, Copyright Office Issues Notice of Inquiry on Copyright and Artificial Intelligence, https://www.copyright.gov/newsnet/2023/1017.html (last viewed: 2025/05/19) [3]supra note 1, at 26. [4]Id. at 27. [5]AI模型之建立仰賴神經網,主要功能為將輸入資料轉換為輸出資料。神經網路之運作方式係透過大量於訓練過程中產生之參數進行運案,而該些參數即為「權重」(weights)。 [6]Id. at 28. [7]Id. [8]Id. at 30. [9]Id. at 36-37. [10]轉化性係指新作品加入新元素,具有與原作不同目的或性質,且以新表達、意義或訊息改造原作。並且新作品於市場上較不會取代原作。 [11]Id. at 46. [12]Id. [13]Id. at 47. [14]Id. at 48. [15]Id. at 54. [16]Id. at 60. [17]Id. at 65. [18]Id. at 65-66. [19]Id. at 66-67. [20]Id. at 85. [21]Id. at 106. [22]Id. at 107. [23]Id. 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟公布數位單一市場下ICT標準化優先發展項目歐盟於2016年4月19日公布數位單一市場下ICT標準化優先發展項目(ICT Standardisation Priorities for the Digital Single Market),包括:5G通訊、雲端運算、智慧聯網、巨量資料技術、以及網路安全等,作為目前數位單一市場發展的基礎。相關影響產業包含:智慧健康、智慧能源、智慧運輸系統、電動車、智慧家居、以及智慧城市等。其三大主軸依次說明如下: 1. ICT標準建立為數位單一市場發展核心 歐盟將依1025/2012規則為基礎,進行標準化建立,因此將聚焦在數位單一市場需要發展的核心技術領域,優先進行標準訂定。 2. 因應全球技術變遷發展 ICT標準發展主要仍以產業為導向,且由產業自願性採納,建立之原則包括應具備透明性、開放、公平與一致性、有效與連結性等,此同時也能促成歐洲創新能量之發展。 3.以雙主軸計畫優先發展ICT標準設立 (1)首先歐盟執委會將確認數位單一市場優先發展之五項領域,並且設立發展時程。 (2)針對上述的優先發展領域,歐盟將進行施行檢視以及相關細項。 在5G通訊部分,預計將透過5G公私協力合作發展,同時以目前產業的需求為發展導向;在雲端運算方面,歐盟將以資金補助方式,促進雲端應用的互通性與易取性發展,並且支持企業,尤其在中小企業部分,以服務層級協議為基礎,協助採用雲端運算服務;在智慧聯網發展部分,主要為發展技術、介面、Open API等,建立準則,並預計將智慧聯網標準納入成為政府採購項目之一;在網路安全性部分,在上述發展技術領域當中,資料安全與隱私保護為核心議題,因此除了透過公司協力方式發展安全技術以外,同時也鼓勵業者應該設計著手保護隱私等概念優先納入技術之中;關於巨量資料技術部分,包括跨部門技術整合、資料與後設資料有更佳的互通性。此外,尚包括資料與軟體基礎設施服務,提供科學資料的交換、執行資料管理計畫、品質驗證、信賴性與透明性等原則。 最後,在可能受影響之產業方面,以智慧健康發展為例,智慧健康必須符合病人預期要求,如病人安全維護以及達到更佳的健康照護體系。因此,互通性的標準為當中關鍵的角色,未來亦有助於發展各國之間跨境醫療照護實踐。在電子病歷交換方面,從病人病歷摘要、電子處方簽等等,在符合個資保護條件之下,建立互通性標準可使疾病的治療更為完善。歐盟未來將持續鼓勵各會員國之間標準互通性之發展,包含目前行動健康應用程式的使用,以及未來遠距醫療應用。後續,歐盟將從2016年開始至2017年,持續針對標準建立進行討論會議,預計以資金費用補助以及其他政策方式輔導發展,同時也在2016年6月提出規劃說明使歐盟標準化政策發展符合現代化。