2020年4月20日澳洲政府要求澳洲競爭及消費者委員會(Australian Competition and Consumer Commission, ACCC)草擬強制性行為準則,以解決澳洲新聞媒體業者與數位平台(特別是Google及Facebook)間不對等的議價地位問題,由於2019年ACCC曾嘗試讓Google、Facebook自願與業者議價,並訂定相關程序準則,但事後成效不彰。為因應政府要求,ACCC於同年7月31日公布一份行為準則草案,「2020年修正草案—新聞媒體與數位平台強制性議價守則」(TREASURY LAWS AMENDENT (NEWS MEDIA AND DIGITAL PLATFORMS MANDATORY BARGAINING CODE) BILL 2020)。
此行為準則允許新聞媒體業者各自或集體向數位平台協議使用新聞內容的合理費用,請求費用的媒體公司至少須符合最低的編輯專業標準,並保持編輯獨立性,且每年營收須超過15萬澳元。雖然目前草案只適用於Google及Facebook,但未來也可能有其他數位平台列入適用範圍。
澳洲財政部長Josh Frydenberg表示,此準則設立的目的,是為了保護媒體公司著作內容的原創性,並確保業者能獲得合理的報酬,若Google及Facebook三個月內,無法與媒體公司達成報酬協議,將命仲裁員做出具有約束力的決定,違反規定者將會被裁處1000萬澳元的罰款。
此草案公布後,預計於8月28日完成磋商審議程序,並向議會提出最終草案版本,經議會通過後正式生效。由ACCC負責執行並管理該準則,而新聞媒體業者的資格則由澳洲通信媒體管理局(The Australian Communications and Media Authority)認定之。
日本特許廳公開表示,從本年度11月27日起,將開始提供日本商標公報訊給世界智慧財產權機構(WIPO)所建置的世界最大規模之商標資料庫「Global Brand Database」,今後民眾將可以在前述資料庫中搜尋到登載有日本商標註冊資訊的商標公報。如此一來,日本廠商將可以在一個資料庫中完整搜尋到包含日本商標在內的商標資訊,對於日本廠商擬定全球品牌策略將可以提供許多便利。 「Global Brand Database」是WIPO所免費提供的資訊供應服務,在這個資料庫上,一般民眾可以公開使用,進行商標申請案或已註冊商標的檢索,及查照詳細資訊。在2011年3月WIPO啟動這項服務時,當時還只有累積國際註冊商標、依里斯本條約登記的原產地名稱及依巴黎公約登記的國家徽章等,從2013年2月開始,也陸續放入世界各國商標申請案或已註冊商標的資訊。如今,在「Global Brand Database」上已經可以查到16個國家商標主管單位的商標資訊。在2014年11月20日的時間點上,該資料庫約存放有1400萬筆的資訊,而從2014年5月起也開提供了上傳圖片檔案檢索類似圖形商標的圖像檢索功能。 目前參加「Global Brand Database」資料庫資訊提供服務的國家包括美國、澳州、加拿大、新加坡、紐西蘭、瑞士、菲律賓、丹麥、以色列、蒙古、埃及、柬埔寨、愛沙尼亞、阿聯酋、阿曼、阿爾及利亞等16個國家,中國、韓國並未參加。
加拿大隱私主管機關發布個人資料保存與處理指引文件在世界各國,無論是公務機關或非公務機關,均無可避免地大量蒐集個人資料,這些資料包括一般民眾、雇員、顧客或潛在客戶等。對此,加拿大隱私委員會辦公室(Office of the Privacy Commissioner of Canada,簡稱OPC)發布關於「個人資料保存與處理指引文件:原則與良好實作」(Personal Information Retention and Disposal:Principles and Best Practices),以協助聯邦機構與私人機構對組織內部保有之個人資料,做好妥善保存與處理。 OPC建議組織應在內部制定相關管理政策與程序,並於指引文件中提出11項參考要點,其中包括1.是否定期審查蒐集個人資料與保有目的之關連與妥適性?多久審查一次;2.對於保有之個人資料及保存目的是否進行清查與盤點?多久確認一次?3.個人資料儲存的形式與地點為何?是否有備份?4.法律是否有規定最低保存期限?5.組織如何處理個人資料與相關備份檔案?6.對於儲存個人資料之裝置或設備,是否採行適當地安全維護措施?7.個人資料保管與處理相關政策的核決人為誰?8.對於利用資料生命週期追蹤資料,是否存在適當管制程序?9.內部員工是否了解並熟悉組織關於個人資料保存與處理之政策規定?;是否有制定文件銷毀之安全措施?10.資料等候處理期間是否受到安全妥善之保管?11.對於使用資料之第三方,是否有透過合約或其他機制進行有效監督管控措施?是否制定定期查核機制?等,期以協助組織掌握政策與程序制定要領。
美國聯邦通訊委員會暫停去年10月27日通過的寬頻客戶隱私規定原預計於2017年3月2日生效實行的美國聯邦通訊委員會(Federal Communication Commission,FCC)的寬頻客戶隱私規定(Broadband Consumer Privacy Rules),委員會於2017年3月1日宣布暫停該規範效力,並與聯邦貿易委員會(Federal Trade Commission,FTC)發表共同聲明。 為保障資料安全(data security),聯邦通訊委員會於2016年10月27日,以寬頻網路服務提供者(broadband Internet Service Providers,ISPs)及其他電信營運商為規範對象,要求須給予客戶有更多選擇去決定自身資料如何被分享和使用,除將ISP所蒐集得使用及分享的資料分為三類,建立客戶同意要件,尚設立新的提醒要件及保密性違反之通知等。該新的隱私規範試圖與聯邦貿易委員會的規範做區隔,除管制對象不同,管制架構上,聯邦貿易委員會要求業者在蒐集及利用個人資訊時,須符合公平資訊實施原則(Fair Information Practice Principles,FIPPs)之準則(guidelines):通知(notice)、選擇(choice)、讀取(access)、安全(security)。 通過之際產生的爭議,包含聯邦通訊委員會有無管制權限,及實行後可能與聯邦貿易委員會管制架構並行而造成疊床架屋、混淆大眾等的問題;此外,聯邦通訊委員會收到眾多請願,要求重新考慮該規範之實行。請願理由在於該規範之實行將會造成寬頻網路服務提供者及其他電信營運商為了要遵循規範將承受巨大的成本與負擔,並且這些成本與負擔與公眾利益相違背,將會造成不可回復的損害。 在接受請願討論後,聯邦貿易委員會做出暫停實施的決定,認為有關保護資料安全的規範要件需要重新思考,其理由在於:(1)消費者若受到兩種不同的隱私管制方式,會破壞消費者對於線上隱私安全一致性的期待;(2)不應使寬頻網路服務提供者及其他電信營運商遭受重大且不必要的遵循成本。 聯邦通訊委員會也與聯邦貿易委員會共同發表聲明,其聲明提及:聯邦通訊委員會與聯邦貿易委員會皆有責保護美國消費者的線上隱私,然而最好的管制方法,應該是透過一個全面性且一致性的架構。資訊隱私之保護不應當有因管制對象不同而有差別性,況且其中差異僅有專業人士才能辨別出,就消費者保護來說,並行兩道不同管制只會造成混淆,毫無益處。這也是為何當聯邦通訊委員會片面剝奪聯邦貿易委員會的管制權限而引發批評聲浪。對於寬頻提供者應保護隱私與資料安全之要求,應回歸至聯邦貿易委員會,由於國家對網際網路空間的管制,上網行為應該要適用一樣的規則,並且受到同樣的專責機關管制。除此之外,聯邦通訊委員會與聯邦貿易委員將共同合作致力於協調對寬頻提供者的隱私規範,該規範將會同所有與數位經濟相關的公司遵循的標準。線上世界技術中立(technology-neutral)的隱私框架之一致性,方能對消費者帶來最佳利益。 本次聯邦通訊委員會迅速暫停實施的隱私規範,顯現出美國對於保障隱私管制的重視性極高,美國針對網路生態中的不同公司,寬頻網路服務提供者及其他電信營運商,例如Comcast、Verizon、AT&T等;網站或其他邊緣服務商(edge service),例如Google、Facebook、Amazon等,將會有何種一致性的資料安全規範,值得持續關注。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。