歐盟智慧財產局公布2020年智財侵權狀況報告

  歐盟智慧財產局(European Union Intellectual Property Office)於今(2020)年第三季公布最新智財侵權狀況報告,研究報告為其智庫「歐盟智慧財產權侵權觀察平台(The European Union Observatory on Infringements of Intellectual Property Rights)」所執行,並結合經濟合作暨發展組織(Organization for Economic Cooperation and Development)之數據資料,每年以不同主題呈現當年世界智財侵權狀況。今年以「智財權為何重要、智財侵權與打擊仿冒之戰爭」為主題,重點如下:

  1. 智財密集產業對歐盟經濟貢獻占整體GDP的45%、就業人數占歐盟就業人口的29%、出口貨物量占96%。
  2. 企業對智財的重視比例增高,重視智財的企業雇員平均收入較不重視智財權者高出32%;運用智財於營運策略的中小企業成長潛力高於無智財權者,如依權利運用類型區分,其成長率分別是10%(商標)、16%(商標結合專利)、27%(商標與設計權),以及33%(三種權利組合)。
  3. 全球仿冒品占其貿易總量約3.3%,市值高達1,210億歐元。
  4. 除日常藥品,抗生素、癌症或心臟疾病藥物仿冒情形均趨於嚴重;2019年爆發新冠肺炎後,偽造商更是將仿冒移轉至檢測試劑與個人防護用品。

  尤其進入AI與5G時代後,智財密集產業對世界經濟貢獻度可望逐年上升,但侵權狀況恐怕亦同,咎因於該產業之興盛與背後龐大的潛在利益。因此持續推動建立企業的智財意識與防護能力,有其必要性,以助於提升產業發展潛力與整體營運獲利。

相關連結
你可能會想參加
※ 歐盟智慧財產局公布2020年智財侵權狀況報告, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8529&no=55&tp=1 (最後瀏覽日:2025/12/27)
引註此篇文章
你可能還會想看
美國聯邦法官裁決AI「訓練」行為可主張合理使用

美國聯邦法官裁決AI「訓練」行為可主張合理使用 資訊工業策進會科技法律研究所 2025年07月07日 確立我國資料創新利用的法制基礎,建構資料開放、共享和再利用的各項機制,滿足民間及政府取得高品質、可信任且易於利用資料的需求,以資料提升我國數位發展的價值,並強化民眾權利的保障,我國於2025年6月16日預告「促進資料創新利用發展條例」,擬推動資料基礎建設,促進更多資料的釋出。 AI發展領先國際的美國,近日首次有聯邦法院對AI訓練資料表達肯定合理使用看法,引發各界關注[1]。我國已開始著力於AI發展所需的資料流通與有效利用,該判決將有助於啟示我國個人資料、著作資料合法使用之法制因應研析。 壹、事件摘要 2025年6月23日美國加州北區聯邦地方法院(United States District Court for the Northern District of California),威廉·阿爾斯法官(Judge William Alsup)針對Andrea Bartz、Charles Graeber、Kirk Wallace Johnson這三位美國作家,對Anthropic公司訓練大型語言模型(Large Language Model, LLM)時使用受其等著作權保護書籍一案,作出指標性的簡易裁決(summary judgment)[2]。 此案被告掃描所購買的實體書籍,以及從盜版網站複製取得的受著作權保護的書籍,儲存在其數位化、可搜尋的檔案中,用來訓練其正在開發的各種大型語言模型。原告主張被當開發Claude AI模型,未經授權使用大量書籍作為訓練資料的行為,為「大規模未經授權利用」。法院則以四要素分析架構,支持合理使用抗辯(Fair Use Defense),強調AI訓練屬於技術發展過程中不可或缺的資料利用,AI公司於模型訓練階段使用著作權書籍,屬於「合理使用」(Fair Use),且具「高度轉化性」(Highly Transformative),包括將購買的實體圖書數位化,但不包括使用盜版,也不及於建立一個永久性的、通用目的的「圖書館(library)」(指訓練資料集)。 貳、重點說明 依美國著作權法第107條(17 U.S.C. § 107)規定,合理使用需綜合考量四要素,法官於本案中認為: 一、使用的目的與性質—形成能力具高度轉化性 AI模型訓練的本質在於學習語言結構、語意邏輯,而非單純複製或重現原著作。AI訓練過程將大量內容作為輸入,經由演算法解析、抽象化、向量化,最終形成轉個彎創造出不同的東西 (turn a hard corner and create something different) 的能力,屬於一種「學習」與「再創造」過程。AI訓練的目的並非為了重現原著作內容,而是為了讓模型具備生成新內容的能力。這種「轉化性」(transformative use)極高,與單純複製或替代原著作的行為有明顯區隔[3]。 另外訓練過程對資料做格式變更本身並未增加新的副本,簡化儲存並實現可搜尋性 (eased storage and enabled searchability),非為侵犯著作權人合法權益目的而進行,亦具有轉化性 (transformative)。原告就所購買的紙本圖書,有權按其認為合適的方式「處置 (dispose)」,將這些副本保存在其資料集中,用於所有一般用途[4]。 二、受保護作品的性質--高度創作性非關鍵因素 法院認同原告所主張的書籍是具有高度創意(creative)的作品理應享有較強的保護。但法院亦認為合理使用的四個要素,須為整體衡量,儘管作品本身具有較高的創意性,但由於使用行為的高度轉化性以及未向公眾直接重製原作表達,整體而言,法院認定用於訓練 LLM 的行為構成合理使用[5]。 三、使用的數量與實質性--巨大數量係轉化所必要 法院認為AI模型訓練需大量內容資料,甚至必須「全書」輸入,看似「大量使用」,但這正是AI技術本質所需。AI訓練是將內容進行抽象化、數據化處理,最終在生成新內容時,並不會原封不動重現原作。所以,雖然訓練過程涉及全部作品,但AI模型的輸出並不會重現原作的具體表達,這與單純複製、重製作品的行為有本質區別[6]。 四、對潛在市場或價值的影響 本案法院明確指出,人工智慧模型(特別是原告的Claude服務)的輸出內容,通常為全新生成內容,並非原作的精確重現或實質模仿冒,而且Claude服務在大型語言模型(LLM)與用戶之間加入額外功能,以確保沒有侵權輸出提供予用戶。因此,此類生成內容不構成對原作的替代,不會削弱原作的銷售市場,也不會造成市場混淆,而且著作權法保護的是原創而非保護作者免於競爭[7]。 不過即便法院支持被告的合理使用主張,肯定AI訓練與著作權法「鼓勵創作、促進知識流通」的立法目的相符。但仍然指出提供AI訓練的合理使用(Fair Use)不代表資料來源的適法性(Legality of Source)獲得合法認定。沒有任何判決支持或要求,盜版一本本來可以在書店購買的書籍對於撰寫書評、研究書中的事實或創建大型語言模型 (LLM) 是合理必要 (reasonably necessary) 的。此類對原本可(合法)取得的圖書進行盜版的行為,即使用於轉化性使用並立即丟棄,「本質上」、「無可救藥地」(inherently、irredeemably)構成侵害[8]。 參、事件評析 一、可能影響我國未來司法判決與行政函釋 我國於現行著作權法第65條規定下,須於個案交予我國法院認定合理使用主張是否能成立。本案判決為美國首個AI訓練行為可主張合理使用的法院見解,對於我國法院未來就對AI訓練資料取得的合法使用看法,顯見將會產生關鍵性影響。而且,先前美國著作權局之報告認為AI訓練過程中,使用受著作權保護作品可能具有轉化性,但利用結果(訓練出生成式AI)亦有可能影響市場競爭,對合理使用之認定較為嚴格,而此裁定並未採取相同的見解。 二、搜取網路供AI訓練資料的合理使用看法仍有疑慮 依據本會科法所創智中心對於美國著作權法制的觀察,目前美國各地法院中有多件相關案件正在進行審理,而且美國著作權局的合理使用立場較偏向有利於著作權利人[9]。相同的是,均不認同自盜版網站取得的資料可以主張合理使用。然而AI訓練所需資料,除來自於既有資料庫,亦多來自網路搜取,如其亦不在可主張範圍,那麼AI訓練的另一重要資料來源可能會受影響,後續仍須持續觀察其他案件判決結果。 三、有效率的資料授權利用機制仍是關鍵 前揭美國著作權局報告認為授權制度能同時促進產業發展並保護著作權,產業界正透過自願性授權解決作品訓練之方法,雖該制度於AI訓練上亦尚未為一完善制度。該裁決也指出,可合理使用資料於訓練AI,並不代表盜版取得訓練資料可以主張合理使用。這對於AI開發而言,仍是須要面對的議題。我國若要發展主權AI, 推動分散串接資料庫、建立權利人誘因機制,簡化資料查找與授權流程,讓AI訓練資料取得更具效率與合法性,才能根本打造台灣主權AI發展的永續基礎。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw) [1]相關新聞、評論資訊,可參見:Bloomberg Law, "Anthropic’s AI Book-Training Deemed Fair Use by US Judge", https://news.bloomberglaw.com/ip-law/ai-training-is-fair-use-judge-rules-in-anthropic-copyright-suit-38;Anthropic wins a major fair use victory for AI — but it’s still in trouble for stealing books, https://www.theverge.com/news/692015/anthropic-wins-a-major-fair-use-victory-for-ai-but-its-still-in-trouble-for-stealing-books;Anthropic Scores a Landmark AI Copyright Win—but Will Face Trial Over Piracy Claims, https://www.wired.com/story/anthropic-ai-copyright-fair-use-piracy-ruling/;Anthropic Wins Fair Use Ruling In Authors' AI Copyright Suit, https://www.thehindu.com/sci-tech/technology/anthropic-wins-key-ruling-on-ai-in-authors-copyright-lawsuit/article69734375.ece., (最後閱覽日:2025/06/25) [2]Bartz et al. v. Anthropic PBC, No. 3:24-cv-05417-WHA, Doc. 231, (N.D. Cal. June 23, 2025),https://cdn.arstechnica.net/wp-content/uploads/2025/06/Bartz-v-Anthropic-Order-on-Fair-Use-6-23-25.pdf。(最後閱覽日:2025/06/25) [3]Id. at 12-14. [4]Id. at 14-18. [5]Id. at 30-31. [6]Id. at 25-26. [7]Id. at 28. [8]Id. at 18-19. [9]劉家儀,美國著作權局發布AI著作權報告第三部分:生成式AI訓練-AI訓練是否構成合理使用?https://stli.iii.org.tw/article-detail.aspx?no=0&tp=1&d=9352。

加拿大政府提交予國會《人工智慧資料法案》

  加拿大政府由創新、科學和工業部長(Minister of Innovation, Science and Industry)代表,於2022年6月16日提交C-27號草案,內容包括聯邦的私部門隱私權制度更新,以及新訂的《人工智慧資料法案》(Artificial Intelligence and Data Act, 下稱AIDA)。如獲通過,AIDA將是加拿大第一部規範人工智慧系統使用的法規,其內容環繞「在加拿大制定符合國家及國際標準的人工智慧設計、開發與應用要求」及「禁止某些可能對個人或其利益造成嚴重損害的人工智慧操作行為」兩大目的。雖然AIDA的一般性規則相當簡單易懂,但唯有在正式發布這部包含絕大多數應用狀況的法規後,才能實際了解其所造成的影響。   AIDA為人工智慧監管所設立的框架包含以下六項: (1)方法 以類似於歐盟《人工智慧法案》採用的方式,建立適用於人工智慧系統具「高影響力」的應用方式的規範,關注具有較高損害與偏見風險的領域。 (2)適用範圍 AIDA將適用於在國際與省際貿易及商業行動中,設計、發展或提供人工智慧系統使用管道的私部門組織。「人工智慧系統」的定義則涵蓋任何「透過基因演算法、神經網路、機器學習或其他技術,自動或半自動處理與人類活動相關的資料,以產生結果、做出決策、建議或預測」的技術性系統。 (3)一般性義務 I 評估及緩和風險的措施 負責人工智慧系統的人員應評估它是否是一個「高影響系統」(將在後續法規中詳細定義),並制定措施以辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果。 II 監控 對該「高影響系統」負責的人員應建立準則,以監控風險緩解措施的遵守情況。 III 透明度 提供使用管道或管理「高影響系統」運作的人員應在公開網站上,以清晰的英語揭露   i 系統如何或打算如何使用。   ii 系統所生成果的類型及它所做出的決策、建議與預測。   iii 為辨識、評估與減輕使用該系統可能造成的傷害風險或具有偏見的結果,而制定的緩解措施。   iv 法規明定應揭露的其他訊息。 IV 記錄保存 執行受規範活動的人員應遵守紀錄保存要求。 V 通知 若使用該系統將導致或可能導致重大傷害,「高影響系統」的負責人應通知部門首長。 VI 匿名資料的使用 從事法案所規定的活動及在活動過程中使用或提供匿名資料的人員,必須依據規範制定關於(a)資料被匿名化處理的方式(b)被匿名化資料的使用與管理,兩方面的措施。 (4)部長命令 部門首長可以透過命令要求(a)製作紀錄(b)從事審計或聘請一位獨立的審計師執行(c)成立一個專責執行審計程序的組織(d)成立一個在有理由相信「高影響系統」之使用可能造成急迫重大傷害風險時負責進行終止或准許的組織。 (5)行政管理 AIDA為部門首長制定一項,可指定其所管轄部門中一名高級官員為「人工智慧與資料專員」的權利,其職責在協助部門首長管理與執行AIDA。 (6)罰則 違反AIDA規範之罰則主要為按公司、個人之收入衡量的罰款。特定嚴重狀況如以非法方式取得人工智慧訓練用資料、明知或故意欺騙大眾造成嚴重或心理傷害或財產上重大損失,亦可能判處刑事監禁。

美國白宮發布《晶片與科學法》實施一周年總結

美國白宮(The White House,以下簡稱白宮)於2023年8月9日發布《晶片與科學法》(CHIPS and Science Act,以下簡稱晶片法)頒布一周年之總結,說明相關補助及租稅優惠措施之實施成效。自晶片法施行以來,已吸引高達1,660億美元之私人投資,並有50所以上大學宣布將開設半導體人力培訓課程,顯示晶片法對半導體生產製造在地化已有相當成效。晶片法施行後推動之措施如下: 1.說明半導體補助申請流程及條件 美國國家標準及技術研究院(National Institute of Standards and Technology)於2023年2月28日分別發布「半導體製造補助之申請指引」(Funding Opportunit–Commercial Fabrication Facilities)與「半導體製造補助願景」(Vision for Success: Commercial Fabrication Facilities),說明晶片法補助目的、申請流程、條件以及注意事項,並於同年6月23日更新相關內容。 2.說明柵欄條款之運作方式 美國商務部(Department of Commerce)與財政部(Department of Treasury)2023年3月23日於美國聯邦公報(Federal Register)發布法規預告(proposed rules),詳細說明晶片法內柵欄條款(guardrails)之運作方式。根據法規預告之內容,受補助人於受補助後的10年內若未經美國商務部與財政部同意,不得於中國等特定國家進行半導體製造設施「實質擴廠」之「重大交易」,避免受補助人將晶片法提供之補助用於中國,進而侵害美國國家安全。 3.強化半導體研發創新 美國商務部於2022年9月6日發布「美國晶片補助戰略」(A Strategy for the CHIPS for America Fund),說明商務部將與國家科學基金會(National Science Foundation)等建立「國家半導體科技中心與執行國家先進封裝製造計畫」(National Advanced Packaging Manufacturing Program),協助美國維持半導體研發之領先地位,並大幅縮短研發成果商用化之時程。 4.保障區域經濟發展與創新 美國商務部於2023年5月發布第1期「科技中心計畫」(Tech Hubs Program)申請指引,協助區域製造、商業化和部署關鍵技術;並於2023年6月發布第1期「重新競爭領航計畫」(Recompete Pilot Porgram),為長期處於經濟困境的美國社區提供就業機會。

世界衛生組織發布人工智慧於健康領域之監管考量因素文件,期能協助各國有效監管健康領域之人工智慧

世界衛生組織(World Health Organization, WHO)於2023年10月19日發布「人工智慧於健康領域之監管考量因素」(Regulatory considerations on artificial intelligence for health)文件,旨在協助各國有效監管健康領域之人工智慧,發揮其潛力同時最大限度地降低風險。本文件以下列六個領域概述健康人工智慧之監管考量因素: (1)文件化與透明度(Documentation and transparency) 開發者應預先規範(pre-specifying)以及明確記錄人工智慧系統(以下簡稱AI系統)之預期醫療目的與開發過程,如AI系統所欲解決之問題,以及資料集之選擇與利用、參考標準、參數、指標、於各開發階段與原始計畫之偏離及更新等事項,並建議以基於風險之方法(Risk-based approach),根據重要性之比例決定文件化之程度、以及AI系統之開發與確效紀錄之保持。 (2)風險管理與AI系統開發生命週期方法(Risk management and AI systems development lifecycle approaches) 開發者應在AI系統生命之所有階段,考慮整體產品生命週期方法(total product lifecycle approach),包括上市前開發管理、上市後監督與變更管理。此外,須考慮採用風險管理方法(risk management approach)來解決與AI系統相關之風險,如網路安全威脅與漏洞(vulnerabilities)、擬合不足(underfitting)、演算法偏差等。 (3)預期用途、分析及臨床確效(Intended use, and analytical and clinical validation) 開發者應考慮提供AI系統預期用途之透明化紀錄,將用於建構AI系統之訓練資料集組成(training dataset composition)之詳細資訊(包括大小、設定與族群、輸入與輸出資料及人口組成等)提供給使用者。此外,可考慮透過一獨立資料集(independent dataset)之外部分析確效(external analytical validation),展示訓練與測試資料以外之效能,並考慮將風險作為臨床確效之分級要求。最後,於AI系統之上市後監督與市場監督階段,可考慮進行一段期間密集之部署後監督(post-deployment monitoring)。 (4)資料品質(Data quality) 開發者應確認可用資料(available data)之品質,是否已足以支援AI系統之開發,且開發者應對AI系統進行嚴格之預發布評估(pre-release evaluations),以確保其不會放大訓練資料、演算法或系統設計其他元素中之偏差與錯誤等問題,且利害關係人還應考慮減輕與健康照護資料有關之品質問題與風險,並繼續努力創建資料生態系統,以促進優質資料來源之共享。 (5)隱私與資料保護(Privacy and data protection) 開發者於AI系統之設計與部署過程中,應考慮隱私與資料保護問題,並留意不同法規之適用範圍及差異,且於開發過程之早期,開發者即應充分瞭解適用之資料保護法規與隱私法規,並應確保開發過程符合或超過相關法規要求。 (6)參與及協作(Engagement and collaboration) 開發者於制定人工智慧創新與部署路線圖之期間,需考慮開發可近用且具有充足資訊之平台,以於適合與適當情況下促進利害關係人間之參與及協作;為加速人工智慧領域實務作法之進化,透過參與及協作來簡化人工智慧監管之監督流程即有必要。

TOP