合成資料(synthetic data)

  「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。

  在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。

  英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。

  技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 合成資料(synthetic data), 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8532&no=0&tp=5 (最後瀏覽日:2025/07/05)
引註此篇文章
你可能還會想看
歐盟擬立法要求電信業者及ISP業者保留通聯紀錄

  歐洲議會民眾權益委員會( the European Parliament's civil liberties committee)於2005年11月25日以33票對8票通過新的指令草案,要求電話與網路的通聯紀錄(但不包含內容紀錄)均需被保留6個月到12個月。目前此草案已送交部長理事會(Council of Ministers)審議中。   為避免保留之通聯紀錄遭到濫用,民眾權益委員會要求僅法官可以調閱通聯紀錄,且僅限於調查重大犯罪(例如恐怖份子或是組織犯罪)時始可調閱。但創作及媒體企業協會( the Creative and Meida Business Alliance, CMBA)則希望歐盟能放寬通聯紀錄調閱之限制,允許進行所有犯罪之調查時,特別是在查緝盜版犯罪之情形,能調閱通聯紀錄。   對於業者因配合保留通聯紀錄而增加的額外負擔,則可能透過轉嫁給消費者或是透過整府補貼的方式解決。

從歐盟、新加坡固網法規檢視台灣高速寬頻環境發展困境

美國食品藥物管理局發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》指引草案

美國食品藥物管理局(U.S. Food and Drug Administration, US FDA)於2023年7月14日發布《上市後研究及臨床試驗:判定未遵守聯邦食品、藥品和化妝品法案第505(o)(3)(E)(ii)節的正當理由》(Postmarketing Studies and Clinical Trials: Determining Good Cause for Noncompliance with Section 505(o)(3)(E)(ii) of the Federal Food, Drug, and Cosmetic Act)指引草案,說明FDA如何判定處方藥廠商未遵守上市後要求(Postmarketing Requirements, PMRs)的正當理由。 根據聯邦食品、藥品和化妝品法案(Federal Food, Drug, and Cosmetic Act, FD&C Act)第505(o)(3)節,應完成PMR的廠商必須向FDA更新研究或臨床試驗進度的狀態及時間表,例如:提交最終版本計畫書、完成研究/臨床試驗、提交結案報告。廠商若未向FDA更新上述PMR資訊即違反FD&C Act,除非廠商提出正當理由。 未遵守PMR的正當理由應符合下列三項條件: 一、與錯失時程直接相關的情況。 二、超出廠商的控制範圍。 三、當初制定時間表時無法合理預期的情況。 該指引草案舉例說明可能的正當理由及非正當理由,另建議廠商提交年度報告前主動通報PMR進度的狀態,並在預期錯過時程之前儘快提供理由,亦須採取矯正PMR不合規行為的措施,包括立即制定矯正計畫、主動向FDA通報實際或預期的延誤,以及修訂合理的時間表。未遵守PMR的廠商可能會收到FDA的警告信(Warning Letter)或無標題信(Untitled Letter)、不當標示指控(Misbranding Charges)和民事罰款,FDA將根據廠商是否採取矯正措施來確定罰金。 「本文同步刊載於 stli生醫未來式 網站(https://www.biotechlaw.org.tw)」

美國專利商標局啟動軟體專利檢視計畫

  美國專利商標局(United States Patent and Trademark Office, USPTO)最近宣布將運用同儕檢視的概念,啟動名為”Peer Review Pilot”的軟體專利檢視先導計畫(以下簡稱PRP),該計畫並將與紐約大學進行中的專利共同檢視計畫(Community Patent Review Project (CPRP))合作,以確保軟體專利的品質。   CPRP乃是由紐約大學法學院設置及管理的網站,該網站允許技術專家進一步予以檢視並提供相關資訊的機會,希望專利申請案在經過同儕檢視後,才進一步送交官方審查,藉此縮減審查程序的時間;而UPSTO的PRP也有類似的運作概念,PRP計畫在USPTO開始進行官方的專利審查工作之前,提供ICT領域的技術專家一個針對專利申請書專的權利主張,提出技術之參考註解(annotated technical references)的機會。   USPTO指出,專利審查官員唯有在資訊充分的前提下,才能做出正確的決定,考量專利審查官員必須在有限的時間內找出正確的訊息以對個別案件做出決定,而軟體相關技術的來源碼又不容易取得,也沒有完整的紀錄可供查詢,因此USPTO大膽採用同儕檢視的方法,期能藉此改善軟體專利的審查時間與品質。

TOP