「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。
在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。
英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。
技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
本文為「經濟部產業技術司科技專案成果」
國際能源總署(International Energy Agency, IEA)於2022年7月發布「CCUS法律與管制框架:IEA CCUS指引」(Legal and Regulatory Frameworks for CCUS: An IEA CCUS Handbook),協助各國建構碳捕捉、利用及封存(carbon capture, utilisation and storage, CCUS)相關法制。CCUS是有助於實現2050年全球淨零目標的重要除碳技術,可以捕捉空氣中或大型排放源裡的二氧化碳,將捕捉到的二氧化碳進行再利用,或將二氧化碳注入深層地質構造當中永久封存,藉此減緩全球氣候變遷。 建立健全的CCUS管制架構對於達成全球氣候目標至關重要,IEA於該報告中進一步探討25項法制優先議題,大致可依開發階段區分為資源評估(如二氧化碳及地下空隙空間所有權歸屬)、場址開發、施工、營運、開發、關閉與關閉後防止碳洩漏之法律問題。 由於CCUS在各國發展情況有所差異,IEA提出數種立法模式,例如(1)修改既有廢棄物法律規範以管理CCUS活動,但可能無法涵蓋地下權等其他議題;(2)修正部分既有廢棄物規範並結合環境法規既有之管理面向(如環評等)以形成管制框架;(3)在既有的礦產或石油開發規範建立相關二氧化碳注入與儲存等活動規範,將可包含地下權、開發許可程序、營運及關閉等完整生命週期之立法。(4)制定專法以涵蓋CCUS所有面向之活動。 在國際經驗中,立法者與管制機關於建構CCUS法律框架時,經常遭遇下列問題,包含:(1)CCUS在滿足國家能源需求方面的預期作用為何?(2)CCUS法規如何與現有規範進行調適?(3)是否已有可用的監管指導原則?(4)誰是主要的利害關係人?應如何與之進行溝通?(5)未來是否有審查或修正框架之相關程序?(6)監管機構是否有足夠資源監督CCUS活動?IEA建議釐清上述議題,逐步形塑CCUS管制架構。
日本發布利用AI時的安全威脅、風險調查報告書,呼籲企業留意利用AI服務時可能造成資料外洩之風險日本獨立行政法人情報處理推進機構於2024年7月4日發布利用AI時的安全威脅、風險調查報告書。 隨著生成式AI的登場,日常生活以及執行業務上,利用AI的機會逐漸增加。另一方面,濫用或誤用AI等行為,可能造成網路攻擊、意外事件與資料外洩事件的發生。然而,利用AI時可能的潛在威脅或風險,尚未有充分的對應與討論。 本調查將AI區分為分辨式AI與生成式AI兩種類型,並對任職於企業、組織中的職員實施問卷調查,以掌握企業、組織於利用兩種類型之AI時,對於資料外洩風險的實際考量,並彙整如下: 1、已導入AI服務或預計導入AI服務的受調查者中,有61%的受調查者認為利用分辨式AI時,可能會導致營業秘密等資料外洩。顯示企業、組織已意識到利用分辨式AI可能帶來的資料外洩風險。 2、已導入AI利用或預計導入AI利用的受調查者中,有57%的受調查者認為錯誤利用生成式AI,或誤將資料輸入生成式AI中,有導致資料外洩之可能性。顯示企業、組織已意識到利用生成式AI可能造成之資料外洩風險。 日本調查報告顯示,在已導入AI利用或預計導入AI利用的受調查者中,過半數的受調查者已意識到兩種類型的AI可能造成的資料外洩風險。已導入AI服務,或未來預計導入AI服務之我國企業,如欲強化AI資料的可追溯性、透明性及可驗證性,可參考資策會科法所創意智財中心所發布之重要數位資料治理暨管理制度規範;如欲避免使用AI時導致營業秘密資料外洩,則可參考資策會科法所創意智財中心所發布之營業秘密保護管理規範,以降低AI利用可能導致之營業秘密資料外洩風險。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
歐盟針對RFID的重要議題召開辯論RFID 的利用帶來新一波的物流及管理變革,但是侵犯人權及隱私等相關問題也引發了尖銳的討論,英美等國隱私保護團體及國會議員紛紛呼籲英制訂相關的使用規範。 歐盟在 2006 年 3 月 10 日也舉辦了一場公開意見徵詢,主要徵詢意見的議題有跨國 RFID 系統互通、相容,以及在應用上可能因洩漏位址、身份及歷程而導致的隱私及安全問題。資訊社會及媒體委員會主席 Vivien Reding 表示,隨著晶片技術進步,晶片會變得越來越聰明, RFID 全面應用後可能引發的問題可能在未來會越來越嚴重。透過多網路的連結,必然會促進經濟的繁榮及生活品質的提升,但是隱私保護的問題若不解決,將可能會影響這項科技的應用。因此,對於 RFID 未來的應用應該達成一種社會共識( society-wide consensus )並預先建立可信賴的保護機制。 為此,執委會將公開徵求諮詢,預計在下半年會公布意見資料,後續並可能在進行 2002 年電子通訊及隱私保護指令的修正工作及檢討 RFID 頻率的指配。
淺析英國建築能源效率政策—Green Deal之融資運作政策研究