「合成資料」(synthetic data)的出現,是為了保護原始資料所可能帶有的隱私資料或機敏資料,或是因法規或現實之限制而無法取得或利用研究所需資料的情況下,透過統計學方法、深度學習、或自然語言處理等方式,讓電腦以「模擬」方式生成研究所需之「合成資料」並進行後續研究跟利用,透過這個方法,資料科學家可以在無侵犯隱私的疑慮下,使合成資料所訓練出來的分類模型(classifiers)不會比原始資料所訓練出來的分類模型差。
在合成資料的生成技術當中,最熱門的研究為運用「生成對抗網路」(Generative Adversarial Network, GAN)形成合成資料(亦有其他生成合成資料之方法),生成對抗網路透過兩組類神經網路「生成網路」(generator)與辨識網路(discriminator)對於不同真偽目標值之反覆交錯訓練之結果,使其中一組類神經網路可生成與原始資料極度近似但又不完全一樣之資料,也就是具高度複雜性與擬真性而可供研究運用之「合成資料」。
英國國防科技實驗室(Defense Science and Technology Laboratory, DSTL)於2020年8月12日發布「合成資料」技術報告,此技術報告為DSTL委託英國航太系統公司(BAE Systems)的應用智慧實驗室(Applied Intelligence Labs, AI Labs)執行「後勤科技調查」(Logistics Technology Investigations, LTI)計畫下「資料科學與分析」主題的工作項目之一,探討在隱私考量下(privacy-preserving)「合成資料」當今技術發展情形,並提供評估技術之標準與方法。
技術報告中指出,資料的種類多元且面向廣泛,包含數字、分類資訊、文字與地理空間資訊等,針對不同資料種類所適用之生成技術均有所不同,也因此對於以監督式學習、非監督式學習或是統計學方法生成之「合成資料」需要採取不同的質化或量化方式進行技術評估;報告指出,目前尚未有一種可通用不同種類資料的合成資料生成技術或技術評估方法,建議應配合研究資料種類選取合適的生成技術與評估方法。
本文為「經濟部產業技術司科技專案成果」
面對層出不窮資料違背或身份竊盜事件,2014年初, FTC於美國國會的例行會議上,就數位時代關於隱私權之保護課題進行作證,會議中,FTC乃呼籲美國國會應立即通過制定一個更強的聯邦資料安全與違背提醒的法律,其也進而提出「個人資料隱私暨安全法案(草案)」 (Personal Data Privacy and Security Act of 2014, S.1897)。該草案主要分成兩大部分: 第一部份,將強化身份竊盜和其他違反資料隱私與安全之懲罰;第二部份,係關於可茲辨識個人資料(PII)之隱私和資訊安全。 法案第202條係關於「個人資料隱私與安全機制」(personal data privacy and security program),目的在強化敏感性可茲辨識個人資料的保護,從行政(administrative)、技術(technical)和實體(physical)三個構面的防衛機制,進行相關標準之制訂與落實。有關適用之範疇,乃就涉及州際貿易之商業實體,而該州際貿易包含蒐集、近取、傳輸、使用、儲存或在電子或數位格式處理可茲辨識個人之敏感性資料,而這些資料總計多達1萬筆以上,然而,將不適用於金融機構(financial institutions)、醫療保險轉移和責任法(HIPPA)所管制者、服務提供者(service provider)和公共紀錄(public records)。 而在機制設計上,也係從「設計」(DESIGN)、「風險驗證」 (RISK ASSESSEMENT)和「風險管理」(RISK MANAGEMENT)三個角度進行切入,也必須確實提供員工教育訓練(TRAINING)、弱點測試(VULNERABILITY TESTING)、定期驗證和個人資料隱私與安全之更新,另外,在與外部與服務提供者(例如ISP)之關係上,公司必須盡到適當勤勉的義務(due diligence),也必須透過契約(contract)方式,約定前述所建置起之資料隱私安全機制,並在安全性遭受到侵害時,以合理方式通知締約他方。 本案目前在聯邦參議院已經二讀通過,已交付參議院司法委員會進行下一階段的審議,該立法草案未來是否會直接或間接影響物聯網環境生態系統之商業運作,有待未來持續關注之。
美國將重新檢討網域管理政策美國商業部將於 2006 年 9 月底前舉行針對網域管理的公聽會,檢討美國政府目前對於網域名稱的管理作為,並討論是否將取消對網域名稱的限制與管理。美國這項舉動是回應部分國家對於美國現行網域管理政策的不滿。 目前美國政府主要透過對「網域名稱與位址管理機構」( the Internet Corporation for Assigned Names and Numbers ; IC ANN )的控制,來管理所有”.com” 的網域,並擁有否決網域名稱申請案的權力。美國對於網域的控制,引起部分國家的政府及評論家的批評,認為美國政府對網域的過度干預,已經影響了全球通訊及商業運作的基礎。舉例而言,由於美國政府強烈反對,使專用色情網域”.xxx”申請案遭 ICANN 否決一事,升高了歐盟執委會對美國政府過渡干預網域管理的不滿。 為平衡國際輿論壓力,美國商業部預定於 2006 年 9 月底前召開公聽會,討論往後網域管理的程序及方式,並計畫於 9 月 30 日改變目前對 ICANN 的管理策略。
美國通過《地理空間資料法》,明確化地理空間資料管理美國於2018年10月5日,通過《2018年地理空間資料法》(Geospatial Data Act of 2018,下稱《GDA 2018》),並編列入《2018年美國聯邦航空總署重新授權法案》(Federal Aviation Administration Reauthorization Act of 2018)。該法是接續《2017年地理空間資料法》(Geospatial Data Act of 2017,下稱《GDA 2017》),做出進一步的調整。 《GDA 2017》的核心目標就是要根本性地重整管轄權,以順利發展「國家空間資料基礎建設」(National Spatial Data Infrastructure)。要點如下: 原先美國有許多管轄的地理空間資料旁枝機構,工作重疊性高、權責不清,《GDA 2017》指定「聯邦地理空間資料委員會」(Federal Geographic Data Committee, FGDC)作為權責機關,並管理國家空間資料資產(National Geospatial Data Asset)。 指定「國家地理空間資料諮詢委員會」(National Geospatial Advisory Committee, NGAC),提供FGDC建議並進行監督。 擴充「地理空間資料」的定義,把所有量測(Survey)和製圖(Mapping)成果解釋成地理空間資料(Geospatial Data)。 《GDA 2018》進一步提出規範,明確化地理空間資料管理: 回饋報告 要求執行與地理空間相關計畫的聯邦單位,提供年度報告;並要求聯邦地理空間資料委員會(FGDC)按《GDA 2017》所列的職責,對於所有相關單位進行評估報告。這些評估報告會提交給國家地理空間資料諮詢委員會(NGAC)寫成報告,在兩年內提供給國會。 國家空間資料基礎建設 明確設立兩個目標:第一個目標是地理空間資料的隱私管理和安全性保障;第二個目標則是建置全球空間資料基礎建設。 國家空間資料資產 希望FGDC會能夠就各個主題指定專責機構進行管理。
自動駕駛車輛之分級與責任所謂自動駕駛(autopilot),原來是指一個用來控制載具軌道而無需人工一直干預的系統,亦即無須人類持續干預,但人類仍須於關鍵時刻介入進行決定或作為,此時機器僅作為輔助。 而自動駕駛汽車或稱全自動駕駛,則只完全無須人類干預,由機器自動感應偵測,自動做成決策控制車輛行駛。故由人類的介入程度區別究竟是駕駛輔助或自動駕駛。美國國家公路交通安全管理局(NHTSA)於2016年已提出正式的分類系統,除手動駕駛(0級)外,區分弱駕駛輔助(1級)、部分自動駕駛(2級)、有條件全自動(3級)、高度/完全自動化(4級)不同程度的自動駕駛。其他國家如德國,在聯邦政府的「自動駕駛圓桌會議」也對自動駕駛有類似的四等級區分。 德國聯邦政府也在於2017年1月25日提出規範自動駕駛之法律草案,亦即道路交通法修正法(Änderung des Straßenverkehrsgesetzes),核心在於賦予電腦與人類駕駛者法律上同等地位。亦即,駕駛人的定義未來擴張延伸到「使用不同程度自動駕駛系統者」。根據草案將來在車輛行駛中,人類可以在特定時間與特定狀況下接管整個行駛。而最重要的修正:人類始終應該負使用電腦的最終責任。 故在行駛中駕駛人將會被輔助機器替代,更要求自駕系統應該具備“隨時可以由駕駛人接手操控或停俥”的功能。 分類中,駕駛人的角色只有到全自動駕駛實現時才退場,屆時才會發生無駕駛人只有乘客的狀況。 修法也重視自駕技術失敗並導致事故所生責任分擔的問題。對於責任的調查將採用如同飛航安全中之「黑盒子」的方式,該裝置會記錄行駛中的所有基本資料。這將有助於發生事故後澄清,查明究竟是技術上原因、製造商或駕駛員的過失,以確保駕駛人無法將責任全部推給自動化系統的故障。