德國向歐盟提交《人工智慧白皮書-歐洲卓越與信任概念》及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》意見

  德國聯邦政府於2020年6月29日,針對歐盟執委會於2020年2月19日公布的《人工智慧白皮書-歐洲卓越與信任概念》(Weißbuch zur Künstlichen Intelligenz – ein europäisches Konzept für Exzellenz und Vertrauen)及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》(Bericht über die Auswirkungen künstlicher Intelligenz, des Internets der Dinge und der Robotik in Hinblick auf Sicherheit und Haftung) 提交意見,期能促進以負責任、公益導向、以人為本的人工智慧開發及使用行為,並同時提升歐盟的競爭力及創新能力。

  歐盟執委會所發布的人工智慧的白皮書及人工智慧對安全和責任的影響報告,一方面可促進人工智慧使用,另一方面則藉此提醒相關風險。本次意見主要集結德國聯邦經濟與能源部、教育與研究部、勞動與社會事務部、內政、建築及社區部以及司法與消費者保護部之意見。德國政府表示,投資人工智慧為重要計畫之一,可確保未來的創新和競爭力,以及應對諸如COVID-19疫情等危機。最重要的是,可透過人工智慧的應用扶持中小型公司。然而在進行監管時,必須注意應促進技術發展而非抑制創新。

  在《人工智會白皮書-歐洲卓越與信任概念》中指出,人工智慧發展應在充分尊重歐盟公民的價值觀和權利的前提下,實現AI的可信賴性和安全發展之政策抉擇,並於整體價值鏈中實現「卓越生態系統」(Ökosystem für Exzellenz),並建立適當獎勵機制,以加速採用AI技術為基礎之解決方案。未來歐洲AI監管框架將創建一個獨特的「信任生態系統」(Ökosystem für Vertrauen),並確保其能遵守歐盟法規,包括保護基本權利和消費者權益,尤其對於在歐盟營運且具有高風險的AI系統更應嚴格遵守。此外,應使公民有信心接受AI,並提供公司和公共組織使用AI進行創新之法律確定性。歐盟執委會將大力支持建立以人為本之AI開發方法,並考慮將AI專家小組制定的道德準則投入試行階段。德國政府指出,除了要制定並遵守歐洲AI的監管政策外,應特別注重保護人民之基本權,例如個人資料與隱私、消費者安全、資料自決權、職業自由、平等待遇等,並呼籲國際間應密切合作,運用人工智慧技術克服疫情、社會和生態永續性等挑戰。另外,德國政府亦支持將人工智慧測試中心與真實實驗室(監理沙盒場域)相結合,以助於加速企業實際運用,也將帶頭促進AI在公部門之運用。

  在《人工智慧,物聯網和機器人技術對安全和責任之影響報告》中則指出,歐洲希望成為AI、IoT和機器人技術的領導者,將需要清楚、可預測的法律框架來應對技術的挑戰,包括明確的安全和責任框架,以確保消費者保護及企業合法性。AI、IoT和機器人技術等新數位技術的出現,將對產品安全性和責任方面出現新挑戰,而在當前的產品安全法規上,缺乏相關規範,特別是在一般產品的安全指令,機械指令,無線電設備指令等,未來將以一致地在各框架內針對不同法律進行調修。在責任方面,雖然原則上現有法令尚仍可應對新興技術,但人工智慧規模的的不斷變化和綜合影響,將可能增加對受害者提供賠償的困難度,導致不公平或效率低下的情形產生,為改善此一潛在不確定性,可考慮在歐盟層級調修產品責任指令和國家責任制度,以顧及不同AI應用所帶來的不同風險。德國政府除了支持歐盟作法,在創新與監管取得平衡,更強調應不斷檢視產品安全和產品責任法是否可滿足技術發展,尤其是對重要特定產業的要求,甚至修改舉證責任。並可透過標準化制定,加速人工智慧相關產品與服務的開發。另外,應依照風險高低擬定分類方法,並建議創建高風險AI系統之註冊與事故報告義務,以及相關數據保存、記錄及資料提供之義務,針對低風險AI應用則採自願認證制度。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 德國向歐盟提交《人工智慧白皮書-歐洲卓越與信任概念》及《人工智慧,物聯網和機器人技術對安全和責任之影響報告》意見, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8546&no=64&tp=1 (最後瀏覽日:2025/10/23)
引註此篇文章
你可能還會想看
日本發布成為可信賴夥伴的資料治理手冊,呼籲企業應建立並實施貫穿資料生命週期的資料治理機制

日本獨立行政法人情報處理推進機構於2025年1月28日發布《成為可信賴夥伴的資料治理手冊(下稱《手冊》)》,旨在呼籲企業建立與實施「貫穿資料生命週期的資料治理機制」,藉此將資料價值最大化,並將資料風險最小化。 《手冊》指出,資料驅動著社會發展,資料治理的重要性亦隨之提升。資料治理係指企業或組織透過機制、規則與制度等多種層面的策略性手段管理其重要資料資產,並透過制定相應的政策與規則,確保資料的品質與安全性。同時,考量資料具備易於複製、竄改且流通難以控制的特性,建立完善的資料治理機制亦有助於在共享資料的過程中維持其品質及安全性。推動資料治理的基礎,則仰賴適當且有效的資料管理機制,亦即確保在蒐集、處理、儲存與使用等資料生命週期各階段皆能落實資料管理機制。然而,資料管理本身要能發揮效益,仍須依賴組織具備足夠的資料成熟度,即具備正確處理與應用資料的整體能力,方能系統性的落實管理與治理工作。 根據《手冊》內容,透過資料治理,企業或組織將能確保資料品質、透明度及安全性,並基於可信任的資料進行決策,進而有效提升決策精準度,實現風險管理與法規遵循,進一步強化自身在資料經濟中的「價值」、「信任」與「公正性」。 我國企業如欲逐步建立並落實貫穿資料生命週期的資料治理機制,可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,作為制度設計與實務推動之參考,以強化資料治理能力。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)

經濟合作與發展組織發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》

經濟合作與發展組織(Organisation for Economic Co-operation and Development, OECD)於2023年2月23日發布《促進AI可歸責性:在生命週期中治理與管理風險以實現可信賴的AI》(Advancing accountability in AI: Governing and managing risks throughout the lifecycle for trustworthy AI)。本報告整合ISO 31000:2018風險管理框架(risk-management framework)、美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)人工智慧風險管理框架(Artificial Intelligence Risk Management Framework, AI RMF)與OECD負責任商業行為之盡職調查指南(OECD Due Diligence Guidance for Responsible Business Conduct)等文件,將AI風險管理分為「界定、評估、處理、治理」四個階段: 1.界定:範圍、背景、參與者和風險準則(Define: Scope, context, actors and criteria)。AI風險會因不同使用情境及環境而有差異,第一步應先界定AI系統生命週期中每個階段涉及之範圍、參與者與利害關係人,並就各角色適用適當的風險評估準則。 2.評估:識別並量測AI風險(Assess: Identify and measure AI risks)。透過識別與分析個人、整體及社會層面的問題,評估潛在風險與發生程度,並根據各項基本價值原則及評估標準進行風險量測。 3.處理:預防、減輕或停止AI風險(Treat: Prevent, mitigate, or cease AI risks)。風險處理考慮每個潛在風險的影響,並大致分為與流程相關(Process-related)及技術(Technical)之兩大處理策略。前者要求AI參與者建立系統設計開發之相關管理程序,後者則與系統技術規格相關,處理此類風險可能需重新訓練或重新評估AI模型。 4.治理:監控、紀錄、溝通、諮詢與融入(Govern: Monitor, document, communicate, consult and embed)。透過在組織中導入培養風險管理的文化,並持續監控、審查管理流程、溝通與諮詢,以及保存相關紀錄,以進行治理。治理之重要性在於能為AI風險管理流程進行外在監督,並能夠更廣泛地在不同類型的組織中建立相應機制。

歐盟會員國要求分享DNA資料庫

  歐盟十五個會員國為強化對抗恐怖攻擊、跨邊境犯罪及非法遷徙之國際合作,於2007年3月28日提出有關資料分享的立法草案,以期歐盟能夠建立一套資料分享的機制與架構。立法草案明確規範了各成員國就資料保護所應給予的等級,其必須保證個人資料保護必須達到與1980年歐洲理事會(Council of Europe)通過的「保護自動化處理個人資料公約(Convention for the Protection of Individuals with Regard to Automatic Processing of Personal Data)」及其於2001年通過的附加議定書相同等級。   該立法草案係根據「Prüm條約」而來,其條約簽署背景為2004年馬德里的恐怖組織炸彈攻擊事件,有鑑打擊恐怖攻擊及跨國犯罪之國際合作,歐盟七個會員國於2005年5月27日在德國、比利時及盧森堡邊境的城市Prüm,簽訂了該條約。條約中規定,簽署國之警察及刑事追訴機關執法於恐怖攻擊及跨邊境犯罪時,得向他簽署國處理相關資料之單位請求有關DNA之分析資料、指紋及相關車籍資料。   目前,歐盟資料保護監督機構(European Data Protection Supervisor)已背書支持建立該機制與架構,並且聲明表示,該架構之建立,仍應注意資料保護的相關事項,在追求資料分享更為便利的同時,應給予人民更為足夠的保護,再者,資料處理的權責單位對於不同的資料類型,也應以不同的方式處理之,越敏感性的資料越應限制其使用目的,並且讓越少人得以接觸。

美國公布「2050淨零排放之路:美國長期策略」

  美國於2021年11月1日公布「2050淨零排放之路:美國長期策略」(The Long-Term Strategy of the United States: Pathways to Net-Zero Greenhouse Gas Emissions by 2050),確立美國未來十年溫室氣體減量發展方向,希望透過聯邦政府與各州、地方政府間合作,並結合社會整體力量,使美國可以在2050年實現淨零排放,並支持更加永續、具彈性且平等的經濟發展,實現完全的零碳污染、強化經濟及提升大眾健康。   本報告首先強調從現在開始至2030年約十年間溫室氣體排放減量的重要性,並說明美國接下來將以溫室氣體排放減量,作為未來達成淨零排放目標之基礎。為了達成淨零排放,美國計畫自能源、產業的排放結構著手推動轉型,報告中公布五項具體目標: 電力脫碳化:近年來因為風力及太陽能等潔淨能源發電成本急遽降低,能源轉型的腳步也逐漸加快,在此基礎上,美國訂定2035年達到100%潔淨電能的目標,並預計電力部門可於2050年以前達到真正的淨零排放。 電動化或轉換為潔淨能源:推動各部門電動化,使交通、建築物及工業製程可以使用合理成本且具一定效率的電力作為主要能源;針對航空、海運及部分工業製程等以現行科技水準較難實現電動化的經濟活動,則推動轉換為氫能、永續生質能等較潔淨的燃料。 減少能源浪費:透過新技術的開發,提升能源使用效率,例如於新建建築物使用能源效率較優的設備、更新既有建物之設備、改善工業製程的能源效率等。 降低甲烷等非二氧化碳溫室氣體排放:採取適當措施以減少甲烷、氫氟碳化合物、氮氧化物等非二氧化碳溫室氣體之排放,包括於石油及天然氣系統加裝甲烷洩漏感測器,以監控其洩漏狀態,以及將冷卻設備中的制冷劑從氫氟碳化合物更換為環境友善的其他物質。 移除大氣中二氧化碳:增加自然碳匯,或以目前可實際運用的技術吸收大氣中的二氧化碳。   美國預計結合聯邦、地方政府,以及產業、學術機構、投資人等社會各界,透過政策執行,強化推動能源、運輸、土地利用等經濟活動的溫室氣體減量工作;同時,配合資金導入,支持並給予各部門足夠的誘因投入潔淨技術的開發,並透過合作,以減少技術開發時可能遭遇的障礙及付出的成本,帶動美國整體朝淨零目標邁進。

TOP