新加坡個人資料保護法修正草案

  新加坡通訊及新聞部(Ministry of Communications and Information, MCI)與新加坡個人資料保護委員會(Personal Data Protection Commission, PDPC)於西元2020年5月14日至28日間針對其「個人資料保護法修正草案」進行民眾意見諮詢,總共收到87份回覆。綜合民眾回覆之意見後,同年10月5日,於議會提出了「個人資料保護法修正草案」,修正重點如下:

  1. 提高外洩個人資料者罰鍰金額,至該公司在新加坡年營業額10%或1000萬美元。MCI / PDPC說明,實際上於裁罰前會綜合考量個案事實與相關因素(如:嚴重性、可歸責性、影響狀況、組織有無採取任何措施減輕個資外洩造成的影響等),作為裁罰金額的判斷依據。此外,新加坡的個人資料保護法也加入了個資外洩通知義務,但與歐盟一般資料保護規範(General Data Protection Regulation, GDPR)仍有不同,例如:其多了評估是否通知的機制。
  2. 組織基於商業改善之目的,且遵守法定條件下,得未經同意使用個人資料,此處商業改善目的包含:(1)改善或加強提供之商品或服務,或開發新的商品或服務;(2)改善或發展新的營運方式;(3)瞭解客戶喜好;(4)客製化商品或服務所需。
  3. 在公司併購、重組、出售股份以及經營權轉讓等關於公司資產處置情形,得例外無需經當事人同意而蒐集、處理與利用個人資料。
  4. 新增資料可攜權相關規定。
  5. 處罰未經授權者處理個人資料之行為。針對民眾回覆之疑慮(認為草案內容不明確),MCI / PDPC說明預計在《法規與諮詢指南》中闡明有關授權行為的細節性規定,包含採取的形式。

相關連結
你可能會想參加
※ 新加坡個人資料保護法修正草案, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8556&no=67&tp=1 (最後瀏覽日:2026/01/11)
引註此篇文章
你可能還會想看
英國提出因應GDPR自動化決策與資料剖析規定之細部指導文件

  2018年5月,英國資訊專員辦公室(Information Commissioner’s Office, ICO)針對歐盟GDPR有關資料自動化決策與資料剖析之規定,公布了細部指導文件(detailed guidance on automated decision-making and profiling),供企業、組織參考。   在人工智慧與大數據分析潮流下,越來越多企業、組織透過完全自動化方式,廣泛蒐集個人資料並進行剖析,預測個人偏好或做出決策,使個人難以察覺或期待。為確保個人權利和自由,GDPR第22條規定資料當事人應有權免受會產生法律或相類重大效果的單純自動化處理決策(a decision based solely on automated processing)之影響,包括對個人的資料剖析(profiling),僅得於三種例外情況下進行單純自動化決策: 為簽訂或履行契約所必要; 歐盟或會員國法律所授權; 基於個人明示同意。   英國2018年新通過之資料保護法(Data Protection Act 2018)亦配合GDPR第22條規定,制定相應國內規範,改變1998年資料保護法原則上容許資料自動化決策而僅於重大影響時通知當事人之規定。   根據指導文件,企業、組織為因應GDPR而需特別留意或做出改變的事項有: 記錄資料處理活動,以幫助確認資料處理是否符合GDPR第22(1)條單純自動化決策之定義。 倘資料處理涉及資料剖析或重大自動化決策,應進行資料保護影響評估(Data Protection Impact Assessment, DPIA),判斷是否有GDPR第22條之適用,並及早了解相關風險以便因應處理。 提供給資料當事人的隱私權資訊(privacy information),必須包含自動化決策之資訊。 應確保組織有相關程序能接受資料當事人的申訴或異議,並有獨立審查機制。   指導文件並解釋所謂「單純自動化決策」、「資料剖析」、「有法律效果或相類重大影響」之意義,另就可進行單純自動化決策的三種例外情況簡單舉例。此外,縱使符合例外情況得進行單純自動化決策,資料控制者(data controller)仍必須提供重要資訊(meaningful information)給資料當事人,包括使用個人資料與自動化決策邏輯上的關聯性、對資料當事人可能產生的結果。指導文件亦針對如何向資料當事人解釋自動化決策處理及提供資訊較佳的方式舉例說明。

英國Royal Free國家健康服務基金信託與Google DeepMind間的資料分享協議違反英國資料保護法

  英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2017年7月公告Royal Free國家健康服務基金信託(Royal Free London NHS Foundation Trust)與Google人工智慧研究室DeepMind之間的資料分享協議,違反資料保護法(Data Protection Act)。   該協議之目的在使DeepMind利用Royal Free所提供的醫療資料,開發一款名為Streams的應用程式,透過人工智慧系統分析得知病患惡化之情況,並以手機警示方式通知臨床醫生。由於涉及病患的可識別個人資料且人數多達160萬人,協議的合法性,尤其在資料分享是否經病患同意方面,受到質疑。   Royal Free與DeepMind主張因應用程式是直接對病患進行醫療照護,具有病患默示同意(implied consent)之正當基礎,且資料經加密後才傳給DeepMind。惟經ICO調查結果如下: 就資料將被使用作為應用程式測試一事,病患未獲充分告知亦無合理期待; 雖執行隱私影響評估,惟僅於資料傳給DeepMind後才進行,無法發揮事前評估作用; 應用程式尚在測試階段,無法說明揭露160萬病患紀錄的必要性與手段合理性。   目前Royal Free已承諾改進以確保其行為合法性。ICO之認定突顯創新不應以「減損法律對基本隱私權保障」作為代價。

數位模擬分身(Digital Twin)

  數位模擬分身(Digital Twin)係指將實體設備或系統資訊轉為數位資訊,使資訊科學或IT專家可藉此在建立或配置實際設備前進行模擬,從而深入了解目標效能或潛在問題。   於實際運用上,數位模擬分身除可用於實體設備製造前,先行針對產品進行測試,以減少產品缺陷並縮短產品上市時間外,亦可用於產品維護,例如在以某種方式修復物品前,先利用數位模擬分身測試修復效果。此外,數位模擬分身還可用於自駕車及協助落實《一般資料保護規範》(General Data Protection Regulation, 以下簡稱GDPR)規定。在自駕車方面,數位模擬分身可通過雲端運算(cloud computing)和邊緣運算(edge computing)連接,由數位模擬分身分析於雲端運算中涉及自駕系統操作之資訊,包括全部駕駛週期內之資料,如車輛模型在內之製造資料(manufacturing data)、駕駛習慣及偏好等個人隱私資料、感測器所蒐集之環境資料等,協助自駕系統做出決策;在GDPR方面,數位模擬分身可利用以下5大步驟,建立GDPR法規遵循機制以強化隱私保護:1.識別利害關係人與資產,包括外部服務和知識庫;2.漏洞檢測;3.透過虛擬數值替代隱私資料進行個資去識別化;4.解釋結果資料;5.利用資料匿名化以最大限度降低隱私風險,並防止受試者之隱私洩露。

專利權利耗盡原則是否適用於具複製能力之專利基改種子? 待美國最高法院判定

  美國最高法院於今年10月5號受理來自印第安那州種植大豆農民(Vernon Hugh Bowman)之上訴,該農民於2011年9月被美國聯邦巡迴上訴法院判定侵害Monsanto 公司的種子專利權,須賠償美金84,456元。   Monsanto 公司的專利種子”Roundup Ready Seed”為一種經基因改造能夠抵抗除草劑之種子。藉由此種技術讓Monsanto 公司成為世界最大的種子公司。為了確保農民每年度必須重新經由合法受權經銷商購買專利種子,而非使用上一季收成後所留存的種子,想要種植Monsanto 公司受專利保護的基因改造種子的農民必須同意不會將收成後取得的種子再用來種植。   於此案中,Monsanto 公司認為上訴人Bowman種植由糧倉(grain elevator)所買來的種子含其專利基因,因而侵害其基改種子專利權。Bowman則抗辯當他購買種子時, Monsanto 公司之基改種子專利權即已耗盡。美國聯邦巡迴上訴法院認同Monsanto 公司,認為Bowman種植含蓋Monsanto 公司專利種子的行為即是製造一個新的侵權物品,侵害Monsanto 公司的種子專利。Bowman不服上訴至美國最高法院。   美國最高法院不顧歐巴馬政府的反對受理此案,預計其結果除了將對農業生技造成重大影響,對於其他應用自行複製技術如基因改造細胞、幹細胞等生技產業都可能造成影響因而被受大眾關注。

TOP