美國衛生及公共服務部(Department of Health and Human Services, HHS),於2020年6月16日提出「曲速行動(Operation Warp Speed)」,目標是在2021年1月前,提供3億劑具安全有效性的COVID-19疫苗,給所有美國人民使用。參與行動的政府夥伴,包括國家衛生研究院(National Institutes of Health, NIH)、食品藥品監督管理局(U.S. Food and Drug Administration, FDA)、疾病預防管制中心(Centers for Disease Control and Prevention);與多家製藥公司包含嬌生、默克、輝瑞、Moderna、AstraZeneca等,簽訂研究製造及保證收購疫苗的競爭型補助協議,直接由政府需求主導疫苗藥劑的研發、生產與銷售,藉此滿足國家防疫的戰略需求。
曲速行動為政府部門及公私夥伴間的合作計畫,依據美國國會通過《新冠病毒援助、救濟和經濟安全法》(Coronavirus Aid, Relief, and Economic Security, CARES Act),計畫補助資金達100億美元,其中超過65億美元用於生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA),30億美元用於NIH研究。公私夥伴合作項目包括:「加速研發新冠病毒藥物及疫苗計畫」(Accelerating COVID-19 Therapeutic Interventions and Vaccines, ACTIV)、「快速診斷技術計畫」(Rapid Acceleration of Diagnostics Tech program, RADx)等。
曲速行動從100多種疫苗中先行選出14種候選疫苗,由美國政府補助,進行早期臨床實驗,再分次篩選出最具潛力者,進行大規模檢測。透過公私夥伴合作,不僅成功帶動製藥廠商積極研發,也協助候選廠商間彼此競爭、提升製藥能力,進一步反饋研究經驗給最終產出的疫苗成果。
本文為「經濟部產業技術司科技專案成果」
日本經濟產業省2022年4月8日公布「協調性資料加值運用之資料管理框架-透過確保資料可信度創造資料價值之新路徑」(協調的なデータ利活用に向けたデータマネジメント・フレームワーク~データによる価値創造の信頼性確保に向けた新たなアプローチ),提示確保資料可信度之方法。經濟產業省於2019年7月31日設立「第3層︰網路空間信賴性確保之安全對策檢討工作小組」(『第3層:サイバー空間におけるつながり』の信頼性確保に向けたセキュリティ対策検討タスクフォース」,以下簡稱工作小組),討論確保資料可信度之要件,以利資料在網路空間內自由流通,並藉由資料創造出新的附加價值。 工作小組為確保資料可信度,首先定義資料管理為「將資料屬性依據其所涉之法令或組織規章,以及因蒐集、處理、利用、移轉等活動而改變之過程,視為一個生命週期加以管理」,並認為資料管理會受到屬性(資料性質,如內容、揭露範圍、利用目的、資料管理主體、資料權利者等)、場域(針對資料之特定規範,如各國、地區法令、組織內部規定、組織間契約等)及事件(產生、改變及維持資料屬性之事件,如生產、蒐集、處理、移轉、提供、儲存、刪除)等三大要素影響,並據此建立資料管理模型。 工作小組期待藉由上述三大要素,依序透過讓資料處理流程(事件)處於容易被觀察的狀態、整理所涉及之相關規範(場域),以及判斷資料屬性等步驟,讓利害關係人之間可更容易進行資料共享及資料治理。
德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現
Thomson Reuter宣佈全球前百大創新機構Thomson Reuters於11月14日當週,宣佈全球前100家最具創新機構,美國持續領先,而亞洲及歐洲分別屬第二及第三。然而,中國由於智慧財產保護及全球產品商品化實行因素,未能排入百大企業中。其名單結果來自於Thomson Reuters 2011全球百大創新專案,透過專屬方法分析專利資料及相關指標,來確認這些企業和機構於創新活動領先於全球之地位。 Thomson Reuters智慧財產解決方案事業部總裁David Brown表示:「創新使企業和國家成長繁榮,主要是為了追求克服經濟的衰退並達到競爭優勢」。 2011全球百大最具創新企業的市場資料,與2009年比較顯示,2010年百大企業增加了超過400,000工作機會,較前年提高3%,增加的比率高於同一期間的標準普爾(S&P)500企業的幅度。Brown表示:「全球百大創新組織創造的工作機會代表了創新為經濟成長具意義影響的指標」。除此之外,2011百大創新組織的市場價值加權平均收益較前一年度增加12.9%,而標準普爾500企業市場價值加權平均收益僅增加7.2%。 排名企業依地域分佈,其中40%來自為美國,31%為亞洲,29%為歐洲,亞洲主要為日本和南韓,前者占27%,後者占4%。歐洲主要區分為法國(11%),德國(4%),荷蘭(4%),列支敦斯登侯國(1%),瑞典(6%)及瑞士(3%)。法國為歐洲創新領導國。儘管大陸於專利申請數量佔領優先,但缺乏全球影響力及專利獲證比率之重要因素,故未進入前百大名單。 Thomson Reuters排名的方法,主要是以四大衡量基準:專利獲證比率(patent approval success rate),專利組合對於全球的影響(global reach of patent portfolio),對文獻引用的專利影響(patent influence in literature citation)及專利總數量(overall patent volume),選出前百大名單,如:Apple,Microsoft,Intel,LG和Motorola,全文內容可參考http://www.top100innovators.com/。
德國巴伐利亞邦政府聲明其執行DSGVO(GDPR)的方式─對中小企業及協會友善的輔導今年7月31日最新一期的巴伐利亞邦政府公報(Allgemeines Ministerialblatt, AllMBl),揭露今年6月5日的巴伐利亞內閣會議紀錄─關於巴伐利亞邦執行DSGVO的方式。 公報內容指出幾個重點: 業餘體育俱樂部(Amateursportverein)、樂隊(Musikkapelle)或由志願者投入者組成的協會(Verein),不須任命資料保護官員(Datenschutzbeauftragten, DSB)。 如果因為對法律的不熟悉而初次違反DSGVO,並不會被罰款;相關單位的指示和建議將優先於處罰。因依據DSGVO第83條第1項規定,處罰應該是有效、適當且具有懲戒性的。故對於非第一次違反的情況,就可能直接依據DSGVO第83條規定處以罰款。 巴伐利亞邦不能接受「警告律師」(Abmahnanwälten)告誡企業資料保護行為違規的做法。 邦政府將向有關單位進一步確認DSGVO中的相關規定,其應用尤其必須能夠確保正確且適當的符合DSGVO的目標。 邦政府將與協會和中小企業進行進一步有關DSGVO適用的討論。 在巴伐利亞邦政府公布的新聞稿中,總理馬庫斯索德進一步表示:「DSGVO實現了更大程度的隱私保護,但不應該成為官僚主義的怪物。巴伐利亞將提供對協會及中小企業都友善的DSGVO適用方式。我們提供的是幫助,而不是懲罰。」內政部長Joachim Herrmann則表示:「DSGVO希望促使人民接受,但不是在人民的日常生活製造更多的困擾和額外的官僚主義。最重要的是,所有的協會、許多有志願者投入的地方或中小企業,必須透過適當和正確地應用DSGVO,來保護其免受過度的資料保護要求。」 巴伐利亞資料保護監督辦公室(BayLDA, Bayerische Landesamt für Datenschutzaufsicht)並進一步公布了對許多中小企業,如:協會、醫療診所(Arztpraxis)、稅務顧問(Steuerberater)……等行業,遵循DSGVO的參考指引,提供進一步的遵循指示。