美國衛生及公共服務部(Department of Health and Human Services, HHS),於2020年6月16日提出「曲速行動(Operation Warp Speed)」,目標是在2021年1月前,提供3億劑具安全有效性的COVID-19疫苗,給所有美國人民使用。參與行動的政府夥伴,包括國家衛生研究院(National Institutes of Health, NIH)、食品藥品監督管理局(U.S. Food and Drug Administration, FDA)、疾病預防管制中心(Centers for Disease Control and Prevention);與多家製藥公司包含嬌生、默克、輝瑞、Moderna、AstraZeneca等,簽訂研究製造及保證收購疫苗的競爭型補助協議,直接由政府需求主導疫苗藥劑的研發、生產與銷售,藉此滿足國家防疫的戰略需求。
曲速行動為政府部門及公私夥伴間的合作計畫,依據美國國會通過《新冠病毒援助、救濟和經濟安全法》(Coronavirus Aid, Relief, and Economic Security, CARES Act),計畫補助資金達100億美元,其中超過65億美元用於生物醫學高階研究和發展管理局(Biomedical Advanced Research and Development Authority, BARDA),30億美元用於NIH研究。公私夥伴合作項目包括:「加速研發新冠病毒藥物及疫苗計畫」(Accelerating COVID-19 Therapeutic Interventions and Vaccines, ACTIV)、「快速診斷技術計畫」(Rapid Acceleration of Diagnostics Tech program, RADx)等。
曲速行動從100多種疫苗中先行選出14種候選疫苗,由美國政府補助,進行早期臨床實驗,再分次篩選出最具潛力者,進行大規模檢測。透過公私夥伴合作,不僅成功帶動製藥廠商積極研發,也協助候選廠商間彼此競爭、提升製藥能力,進一步反饋研究經驗給最終產出的疫苗成果。
本文為「經濟部產業技術司科技專案成果」
由於美國之主要電信業者與有線電視業者紛紛推出語音、數據與影音三合一服務(triple play),彼此之間的競爭也日益激烈。為搶奪市場,電信業者與有線電視業者分別向美國聯邦通訊傳播委員會(FCC)提出申訴,指競爭對手以不公平方式阻擋客戶轉換服務提供業者。如2008年2月間,Comcast、Time Warner 等有線電視業者向FCC申訴,Verizon 及其他既有電信業者在消費者申請電信號碼可攜服務過程中,以違反通訊法(the Communications Act of 1934)規定方式,利用消費者之個人資料進行「客戶忠誠度行銷」(Customer retention marketing)。電信業者在3月間亦向FCC申訴,有線電視業者拒絕接受競爭對手代替消費者申請取消原訂服務,而要求消費者親自申請,造成消費者轉換服務提供業者之困擾,不利電信業者爭取客戶轉向訂閱其他業者之影音服務。 針對有線電視業者所提出之申訴,FCC執行局(the Enforcement Bureau)認為,就法條解釋觀之,電信業者此一利用消費者資料的方式並未違反通訊法之規定,故建議FCC駁回有線電視業者之申訴。然而,有鑑於電信業者與有線電視業者之間競爭逐漸白熱化,執行局建議FCC就「客戶忠誠度行銷」行為涉及之客戶資料使用與市場競爭利益發佈「初步立法公告」(Notice of Proposed Rulemaking, NPRM),徵詢各方意見,希望建立能一體適用於各個不同平台之規範,以因應跨業競爭問題。
關於軟體產品的智慧財產權保護建議近期軟體產品(特別是演算法)的智慧財產權保護受到各界廣泛注意,2022年12月美國實務界律師特別撰文對此提出相關智財權保護建議。軟體產品通常涉及演算法,指由人工智慧(AI)和分析組成,用於解決特定問題的一組規則。專利通常被企業預設為保護技術產品的最佳形式。 然而在2014年,美國最高法院在Alice Corp. v. CLS Bank International一案中可以發現將軟體申請專利保護可能存在風險,如:(一)軟體可能被認為是抽象概念(abstract ideas),非專利適格標的,而無法受專利法保護;(二)通常不易主張專利權,或可能在訴訟過程中因舉證責任造成機密資訊揭露等風險。因此該文作者認為難以受專利法保護之演算法、用於基於機器學習或訓練模型的資訊和資料集等軟體資料,亦可考慮透過營業秘密來保護,並提出以下營業秘密管理的建議: 1.員工教育訓練:建議企業可在僱傭的各階段(僱傭時、每年、終止時)採行相關措施、訓練,以減少營業秘密的竊用,及防止未來員工抗辯不知道該資訊是營業秘密。 2.機密標示:建議企業透過此階段審視組織對於機密文件之界定,再透過機密標示配合存取權限設定,協助企業控管與防止機密外流。 3.執行:瞭解需要受管理的營業秘密是什麼以及其為何重要。 4.監控和衡量員工參與度:建議企業採取相關監測機制檢視員工活動,及早發現離職動向與管控營業秘密資訊。 5.避免資訊揭露:建議企業應確保在向消費者或客戶行銷的過程中不洩露營業秘密,或至少採取相關保護措施,如簽訂保密契約。 6.確保資料安全:建議企業可建置網路安全策略、設置密碼、存取限制、外部設備使用下載或儲存限制等管控措施。 綜上所述,對於從事軟體開發的企業,除以專利保護產出成果外,還可從技術本質、後續是否容易主張、是否適合公開等面向,評估搭配營業秘密保護成果。並在選擇以營業秘密保護成果時,採行相關的管理措施避免營業秘密外洩而造成企業損失,包括:劃定需管理的營業秘密、制定員工教育訓練與相關管制措施,如機密標示、權限控管,並可搭配預警機制以便能夠即早發現異常。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國著作權法109(a)條「第一次銷售原則」之適用原則美國最高法院於2010年12月13日以4:4的平手票數確立了第九巡迴上訴法院於Omega, S.A. v. Costco Wholesale Corporation案中關於著作權法109(a)條「第一次銷售原則」(first sale doctrine) 並不適用於享有美國著作權法保護之外國製造但未經授權於美國再販售之產品。 此案源於由知名瑞士鐘錶品牌Omega 於瑞士製造的手錶透過所謂「水貨」或「灰色市場」的途徑輾轉由一家名為ENE Limited的紐約公司所購得,而Costco自該公司購得手錶後於加州賣場以低於合法代理商的價格販售。然而,Omega雖對於該手錶於外國的初次販售給予授權,但並未授權該商品爾後輸入美國並由 Costco 販賣之行為。Omega乃對Costco提出侵權告訴,而此案所牽連的著作物即為手錶底面都刻有受美國著作權法所保護之「歐米茄全球設計(Omega Globe Design)」字樣。 Costco則以著作權法第109(a)條作為抗辯,主張「第一次銷售原則」之規定,亦即Omega首次於外國販售該手錶之行為,已排除其對於後續散布、進口及未經授權之銷售等行為之侵權主張。第一審法院聽取Costco 之意見,Omega 乃上訴於第九巡迴法院。上訴法院對於「第一次銷售原則」之適用較為限縮,認為先前Quality King案的判決,並未使上訴法院對於「第109(a)條,只有當該主張涉及在美國國內製造受美國著作權法保護之著作的重製物時,可以對抗第 106(3)條(公開散布權)及第602(a)條(輸入權)」之一般規定無效。換言之「第一次銷售原則」並不適用於銷售外國製造但未經授權於美國再販售的著作物或其合法重製物。而最高法院亦同意上訴法院的看法。此案的判決結果意味著作權人或合法代理商將可間接防止或控制於外國製造的真品(即水貨)未經授權輸入於美國市場。
美國著作權局發布「具AI產出之著作註冊指引」,關鍵在人類智慧貢獻程度美國著作權局(US Copyright Office,USCO)於2023年3月16日頒布「具AI產出之著作註冊指引」(Copyright Registration Guidance: Works Containing Material Generated by Artificial Intelligence),本指引之發布係由於近年美國著作權局時常收到人工智慧著作之註冊申請案,對於此類著作是否可以成功註冊,過去未有較明確之判斷準則,如此恐造成美國著作權體制之紊亂,著作權局遂發布本指引,以作為民眾申請註冊之著作包含利用AI創作內容時之指導依據。 本指引首先認定「著作人」之概念須為人類,此部分與美國憲法、美國著作權法及美國最高法院判例見解相同。 接著,本指引並描述到欲申請之著作,除前開之著作人須為人類外,人類須於該著作中傳達其原始精神理念(own original mental conception),不得為單純之透過機械運作所產生。惟此並非代表人類完全不得運用AI輔助創作,係取決於人類對該創作之創造性控制程度及該創作實際形成(Actually Formed)作者之傳統元素含量。 最後,本指引提出申請人於提出具AI產出著作時應提交之表格為標準表格(Standard Application),在創作者欄位中具體闡述人類作為作者之具體貢獻身份,且不能將AI列為作者或共同作者。至於在本指引發布前已提出之申請案,該指引提到申請人可以透過補充說明之方式,通知著作權局其著作中涉及AI產出部分,並就該部分聲明不專用,以符合新指引所要求之「揭露」。 綜觀以言,可以認定本指引之提出可作為著作人申請註冊時之遵循依據,初步解決過去未有AI著作申請註冊參考依據之弊病,然尚有許多細節待補充,且甚仰賴個案之判斷,惟本文認為未來隨AI科技之發展及廣泛利用,關「人類智慧」於著作貢獻程度更明確、更為具體之判斷標準勢必將應運而生,值得持續關注。