歐盟委員會在2020年1月提出之工作計畫中,即表示2020年第四季度將會提出新的《數位服務法案》《Digital Services Act》,以因應新興數位時代下的歐洲。
2020年10月29日歐盟競爭事務專員表示,幾個科技巨擘針對每天蒐集大量訊息並加以過濾篩選,最後傳遞予公眾有限數量消息的過程,將必須採取更多措施以清除非法及有害的內容,此舉旨在解決與大型社交媒體平台相關之兩大問題,即仇恨言論之傳播以及傷害社會公共對話與民主之言論。
該法案將規範科技公司須針對其行為製作報告,並告知使用者,他們所看到的廣告是由誰付費進行投放、為什麼他們會成為這支廣告的目標對象。蓋因科技公司之數位平台先是無償蒐集使用者個人資料及偏好,再針對這些資料進行分析後,對使用者量身訂製廣告行銷策略,最後科技公司依靠此套方法賺進大量廣告收益,例如,臉書與Google在2018年的廣告收入佔據總收入百分之九十八及百分之八十五以上。
該法案亦將針對科技公司篩選訊息,最後有選擇性的發送特定訊息予社會大眾及量身訂製置入廣告之行為,設立明確規則,羅列應作為或是不作為之清單。例如禁止推銷自己的服務,蓋阻止競爭對手向消費者提供更好的交易服務,等同於變相阻止消費者享受自由競爭和創新的成果;故將先設立協調一致之調查框架,提供一套統一的規則以調查數位服務市場已存之結構性問題,而後在必要時可以採取相關行動,使市場更加具有競爭力。歐盟預計將於2020年12月2日宣布《數位服務法》草案,在正式立法之前,會再與歐盟國家取得一致共識。
為達到二○一○年二氧化碳排放量比一九九○年降低百分之十的目標,瑞士政府已決定明年開徵取暖用油稅,及提高汽油與柴油進口稅。瑞士環境部長勒恩伯格警告,假如溫室氣體排放程度不能降低,可能會課徵更多的燃料捐。 瑞士的「二氧化碳法(CO2 LAW)」奠定了永續能源政策及氣候變遷政策,規定到二○一○年,石化燃料排放的二氧化碳必須比一九九○年水準低百分之十,超過京都議定書的百分之八。瑞士當局已決定,二○○六年起,每公升取暖用油將課徵稅收九分瑞士法郎,汽油與柴油進口稅每公升增加一點六分。 在去年十月,瑞士政府提出四種不同課稅建議,經過諮商,多數贊同取暖用油稅,因為百分之六十的二氧化碳排放來自取暖用油。勒恩伯格表示,這項稅收是公平的,已採取減少二氧化碳排放措施的個人與公司受到的影響較小,「污染者付稅」將可鼓勵採取有利於環境的措施。 瑞士政府並認為,其他溫室氣體排放也會因此降低,健康衛生的開支也因此下降。
美國資訊安全分析新挑戰:巨量資料(Big Data)之應用在2013年的國際資訊安全會議(RSA Conference)上,資安專家紛紛表示,將Big Data技術應用於資訊安全分析的項目上,確實可以幫助企業建立更佳的情勢判斷能力,但在實際執行過程中是一大挑戰。 資安廠商如RSA和賽門鐵克公司,在會議上表示目前的策略是透過新的數據匯集、比對和分析協助企業篩選、過濾結構化和未結構化資料的威脅指標,這是傳統的特徵偵測(signature-based)安全工具無法做到的。 不像傳統的安全手段著重於阻斷攻擊,新的技術強調偵測並立即回應違犯行為,也就是提前遏止任何違犯行為,協助企業作全面性的偵測而不擔心有所遺漏。 由於越來越多的美國政府機關和民間企業遭受到針對性和持續性的攻擊,巨量資料技術的應用需求激增。企業內部都累積著大量的數據和多元的數據種類,而需要動新技術來保護這些數據資料免於惡意人士或對手的竊取或其他侵害行為。企業應該要因應實際面臨的威脅和所獲悉的威脅情報來建立安全模型,取代部署特定產品和外圍系統的防禦。 美國無論是政府機關或民間企業都被捲入了不對稱戰爭-對手是武器精良、準備充分並有嚴密組織的網路敵人。 「駭客只需要攻擊成功一次,但我們必須每次都是成功的」賽門鐵克的總裁deSouza表示。「因此與其專注的在阻擋所有威脅,更好的辦法是使用巨量資料技術偵測侵入行為並消解之」。而在會議中資安專家都肯認至少從理論上來說,以巨量資料技術強化資訊安全是很好的想法。 不過另有其他的說法,金融服務企業LSQ的首席安全及法務主管皮爾遜認為,許多人的電腦紀錄檔和所有的電子裝置都早就被侵入滲透了,這才是問題所在。他表示,目前現存的SIEM(安全性資訊及事件管理)工具可以讓企業聚集來自許多個安全設備的巨量登錄數據整合在同一系統內,但真正的問題是,SIEM工具必須要有能力分析數據並找出關聯性,如此才能偵測到駭客入侵的前兆證據和真實的入侵行為,這和彙整數據是不同的兩件事。許多企業所面臨的問題不是缺乏數據資料,而是要如何為資訊安全的目的建立關聯規則和應用方式,以有效率的方式找出有用的巨量數據並進行分析,和留下可供進行訴訟使用的證據。
因應使用「生成式AI(Generative AI)」工具的營業秘密管理強化建議2024年7月1日,美國實務界律師撰文針對使用生成式AI(Generative AI)工具可能導致的營業秘密外洩風險提出營業秘密保護管理的強化建議,其表示有研究指出約56%的工作者已經嘗試將生成式AI工具用於工作中,而員工輸入該工具的資訊中約有11%可能包含公司具有競爭力的敏感性資訊或客戶的敏感資訊,以Chat GPT為例,原始碼(Source Code)可能是第二多被提供給Chat GPT的機密資訊類型。系爭機密資訊可能被生成式AI工具提供者(AI Provider)用於訓練生成式AI模型等,進而導致洩漏;或生成式AI工具提供者可能會監控和存取公司輸入之資訊以檢查是否有不當使用,此時營業秘密可能在人工審查階段洩漏。 該篇文章提到,以法律要件而論,生成式AI有產生營業秘密之可能,因為營業秘密與著作權和專利不同之處在於「發明者不必是人類」;因此,由生成式 AI 工具協助產出的內容可能被視為營業秘密,其範圍可能包括:公司的內部 AI 平台、基礎的訓練算法和模型、輸入參數和輸出結果等。惟基於目前實務上尚未有相關案例,故生成式AI輸出結果在法律上受保護的範圍與條件仍需待後續的判例來加以明確。 實務專家提出,即使訴訟上尚未明確,企業仍可透過事前的管理措施來保護或避免營業秘密洩露,以下綜整成「人員」與「技術」兩個面向分述之: 一、人員面: 1.員工(教育訓練、合約) 在員工管理上,建議透過教育訓練使員工了解到營業秘密之定義及保護措施,並告知向生成式AI工具提供敏感資訊的風險與潛在後果;培訓後,亦可進一步限制能夠使用AI工具的員工範圍,如只有經過培訓及授權之員工才能夠存取這些AI工具。 在合約方面,建議公司可與員工簽訂或更新保密契約,納入使用生成式AI的指導方針,例如:明確規定禁止向生成式AI工具輸入公司營業秘密、客戶數據、財務信息、未公開的產品計劃等機密資訊;亦可增加相關限制或聲明條款,如「在生成式AI工具中揭露之資訊只屬於公司」、「限制公司資訊僅能存儲於公司的私有雲上」等條款。 2.生成式AI工具提供者(合約) 針對外部管理時,公司亦可透過「終端使用者授權合約(End User License Agreement,簡稱EULA)」來限制生成式AI工具提供者對於公司在該工具上「輸入內容」之使用,如輸入內容不可以被用於訓練基礎模型,或者該訓練之模型只能用在資訊提供的公司。 二、技術方面: 建議公司購買或開發自有的生成式AI工具,並將一切使用行為限縮在公司的私有雲或私有伺服器中;或透過加密、防火牆或多種編碼指令(Programmed)來避免揭露特定類型的資訊或限制上傳文件的大小或類型,防止機密資訊被誤輸入,其舉出三星公司(Samsung)公司為例,三星已限制使用Chat GPT的用戶的上傳容量為1024位元組(Bytes),以防止輸入大型文件。 綜上所述,實務界對於使用生成式AI工具可能的營業秘密風險,相對於尚未可知的訴訟攻防,律師更推薦企業透過訴訟前積極的管理來避免風險。本文建議企業可將前述建議之作法融入資策會科法所創意智財中心於2023年發布「營業秘密保護管理規範」中,換言之,企業可透過「營業秘密保護管理規範」十個單元(包括從最高管理階層角色開始的整體規劃建議、營業秘密範圍確定、營業秘密使用行為管理、員工管理、網路與環境設備管理、外部活動管理,甚至是後端的爭議處理機制,如何監督與改善等)的PDCA管理循環建立基礎的營業秘密管理,更可以透過上述建議的做法(對單元5.使用管理、單元6.1保密約定、單元6.4教育訓練、單元7.網路與環境設備管理等單元)加強針對生成式AI工具之管理。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
美國專利訴訟趨勢與科技專案研發成果運用之法制研析