歐盟委員會在2020年1月提出之工作計畫中,即表示2020年第四季度將會提出新的《數位服務法案》《Digital Services Act》,以因應新興數位時代下的歐洲。
2020年10月29日歐盟競爭事務專員表示,幾個科技巨擘針對每天蒐集大量訊息並加以過濾篩選,最後傳遞予公眾有限數量消息的過程,將必須採取更多措施以清除非法及有害的內容,此舉旨在解決與大型社交媒體平台相關之兩大問題,即仇恨言論之傳播以及傷害社會公共對話與民主之言論。
該法案將規範科技公司須針對其行為製作報告,並告知使用者,他們所看到的廣告是由誰付費進行投放、為什麼他們會成為這支廣告的目標對象。蓋因科技公司之數位平台先是無償蒐集使用者個人資料及偏好,再針對這些資料進行分析後,對使用者量身訂製廣告行銷策略,最後科技公司依靠此套方法賺進大量廣告收益,例如,臉書與Google在2018年的廣告收入佔據總收入百分之九十八及百分之八十五以上。
該法案亦將針對科技公司篩選訊息,最後有選擇性的發送特定訊息予社會大眾及量身訂製置入廣告之行為,設立明確規則,羅列應作為或是不作為之清單。例如禁止推銷自己的服務,蓋阻止競爭對手向消費者提供更好的交易服務,等同於變相阻止消費者享受自由競爭和創新的成果;故將先設立協調一致之調查框架,提供一套統一的規則以調查數位服務市場已存之結構性問題,而後在必要時可以採取相關行動,使市場更加具有競爭力。歐盟預計將於2020年12月2日宣布《數位服務法》草案,在正式立法之前,會再與歐盟國家取得一致共識。
為了持續維持日本國內以及與東京奧運舉辦相關的關鍵基礎設施服務的安全性,日本內閣網路中心於2017年4月19日公布關鍵基礎設施資訊安全對策第4次行動計畫。 在第4次行動計畫,關鍵基礎設施防護目的主要是以關鍵基礎設施的功能保證為考量,盡量減少關鍵基礎設施IT故障的發生,並提升從事故中恢復的速度。因此,第4次行動計畫除持續檢討並改善第3次行動計畫原有政策外,較重要的變革為OT(Operation Technology)的重視與風險對應機制整備。在安全基準整備與落實情況方面,要求關鍵基礎設施產業須將OT的觀點融入人才培育。在資訊分享制度方面,分享的資訊範圍應包含IT、OT與IoT的資訊,並排除資訊分享的障礙。而在風險管理部分,日本從功能保證的觀點出發,新增風險情況對應準備的要求,包含事業持續計畫的提出與緊急應變措施的制定等。而在防護基礎強化上,該行動計畫認為關鍵基礎設施產業的IT、OT人員及法務部門必須依其內部資訊安全策略共同為關鍵基礎設施安全而跨組織合作。 另外,第4次行動計畫變更電力領域關鍵基礎設施的重要系統,從原有的運轉監視系統變更為智慧電表,以及新增化學、信用卡與石油三大關鍵基礎設施領域的業者、關鍵系統與因IT故障對關鍵基礎設施可能造成的危害影響。
性隱私內容外流風波-從美國立法例論我國違反本人意願散布性隱私內容之入罪化 英國上議院人工智慧專責委員會提出AI應用影響報告並提出未來政策建議英國上議院人工智慧專責委員會(Select Committee on Artificial Intelligence)2018年4月18日公開「AI在英國:準備、意願與可能性?(AI in the UK: ready, willing and able?)」報告,針對AI可能產生的影響與議題提出政策建議。 委員會建議為避免AI的系統與應用上出現偏頗,應注重大量資訊蒐集之方式;無論是企業或學術界,皆應於人民隱私獲得保障之情況下方有合理近用數據資訊的權利。因此為建立保護框架與相關機制,其呼籲政府應主動檢視潛在英國中大型科技公司壟斷數據之可能性;為使AI的發展具有可理解性和避免產生偏見,政府應提供誘因發展審查AI領域中資訊應用之方法,並鼓勵增加AI人才訓練與招募的多元性。 再者,為促進AI應用之意識與了解,委員會建議產業應建立機制,知會消費者其應用AI做出敏感決策的時機。為因應AI對就業市場之衝擊,建議利用如國家再訓練方案發展再訓練之計畫,並於早期教育中即加入AI教育;並促進公部門AI之發展與布建,特別於健康照顧應用層面。另外,針對AI失靈可能性,應釐清目前法律領域是否足以因應其失靈所造成之損害,並應提供資金進行更進一步之研究,特別於網路安全風險之面向。 本報告並期待建立AI共通之倫理原則,為未來AI相關管制奠定初步基礎與框架。
IBM提出「人工智慧日常倫理」手冊作為研發人員指引隨著人工智慧快速發,各界開始意識到人工智慧系統應用、發展過程所涉及的倫理議題,應該建構出相應的規範。IBM於2018年9月02日提出了「人工智慧日常倫理」(Everyday Ethics for Artificial Intelligence)手冊,其以明確、具體的指引做為系統設計師以及開發人員間之共同範本。作為可明確操作的規範,該手冊提供了問責制度、價值協同、可理解性等關注點,以促進社會對人工智慧的信任。 一、問責制度(Accountability) 由於人工智慧的決策將作為人們判斷的重要依據,在看似客觀的演算系統中,編寫演算法、定義失敗或成功的程式設計人員,將影響到人工智慧的演算結果。因此,系統的設計和開發團隊,應詳細記錄系統之設計與決策流程,確保設計、開發階段的責任歸屬,以及程序的可檢驗性。 二、價值協同(Value Alignment) 人工智慧在協助人們做出判斷時,應充分考量到事件的背景因素,其中包括經驗、記憶、文化規範等廣泛知識的借鑑。因此系統設計和開發人員,應協同應用領域之價值體系與經驗,並確保演算時對於跨領域的文化規範與價值觀之敏感性。同時,設計師和開發人員應使人工智慧系統得以「了解並認知」用戶的價值觀,使演算系統與使用者之行為準則相符。 三、可理解性(Explainability) 人工智慧系統的設計,應盡可能地讓人們理解,甚至檢測、審視它決策的過程。隨著人工智慧應用範圍的擴大,其演算決策的過程必須以人們得以理解的方式解釋。此係讓用戶與人工智慧系統交互了解,並針對人工智慧結論或建議,進而有所反饋的重要關鍵;並使用戶面對高度敏感決策時,得以據之檢視系統之背景數據、演算邏輯、推理及建議等。 該手冊提醒,倫理考量應在人工智慧設計之初嵌入,以最小化演算的歧視,並使決策過程透明,使用戶始終能意識到他們正在與人工智慧進行互動。而作為人工智慧系統設計人員和開發團隊,應視為影響數百萬人甚至社會生態的核心角色,應負有義務設計以人為本,並與社會價值觀和道德觀一致的智慧系統。