日本經濟產業省(下稱經產省)於2020年6月12日發布其國內產業資通安全現況與將來對策(昨今の産業を巡るサイバーセキュリティに係る状況の認識と、今後の取組の方向性)報告,指出近期針對供應鏈資通安全弱點企業所展開的攻擊,有顯著增長趨勢。為此,該報告建議共組供應鏈的企業間,應密切共享資訊;於關鍵技術之相關資訊有外洩之虞時,應向經產省提出報告;若會對多數利害關係人產生影響,並應公開該報告。遵循該報告之建議要旨,同年11月1日在各產業主要的工商團體引領下,設立了「供應鏈資通安全聯盟(原文為サプライチェーン・サイバーセキュリティ・コンソーシアム,簡稱SC3)」,以獨立行政法人資訊處理推進機構(独立行政法人情報処理推進機構,IPA)為主管機關。其目的在於擬定與推動供應鏈資通安全之整體性策略,而經產省則以觀察員(オブザーバー)的身分加入,除支援產業界合作,亦藉此強化政府與業界就供應鏈資通安全議題之對話。
只要贊同上述經產省政策方向與聯盟方針,任何法人或個人均得參加SC3。針對產業供應鏈遭遇資安攻擊的問題,經產省與IPA已有建構「資通安全協助隊(サイバーセキュリティお助け隊)」服務制度(以下稱協助隊服務),邀集具相關專長之企業,在其他企業遭遇供應鏈資安攻擊時,協助進行事故應變處理、或擔任事故發生時之諮詢窗口。而SC3則規畫為這些參與提供協助隊服務的企業建立審查認證制度。其具體任務包含擬定認證制度的審查基準草案、以及審查機關基準草案,提供IPA來建構上述基準。依該制度取得認證的企業,將獲授權使用「資通安全協助隊」的商標。同時在業界推廣協助隊服務制度,讓取得認證的中小企業得以之為拓展其業務的優勢與宣傳材料。
本文為「經濟部產業技術司科技專案成果」
2019年8月12日澳洲國家交通委員會(NTC)提出「管制政府近用C-ITS和自駕車資料(Regulating government access to C-ITS and automated vehicle data)」政策文件,探討政府使用C-ITS與自駕車資料(以下簡稱資料)所可能產生的隱私議題,並提出法律規範與標準設計原則應如下: 應平衡政府近用資料與隱私保護措施,以合理限制蒐集、使用及揭露資料。 應與現行以及新興國內外隱私與資料近用框架一致,並應進行告知。 應將資料近用權利與隱私保障納入立法中。 應以包容性與科技中立用語定義資料。 應使政府管理資料措施與現行個資保護目的協調一致。 應具體指明資料涵蓋內容、使用目的與限制使用對象,並減少資料被執法單位或經法院授權取得之阻礙。 應使用易懂之語言知會使用者關於政府蒐集、使用與揭露以及資料的重要性。 認知到告知同意是重要的,但同時應提供政府於取得同意不可行時,平衡個人隱私期待之各種可能途徑。 認知到不可逆的去識別化資料在許多情況下的困難度。 支持資料安全保護。 定期檢查資料隱私保護狀態與措施。 以上這些原則將會引導NTC發展自駕車資料規範與國家智慧運輸系統框架,NTC並將於2019年內提出更進一步規劃相關工作之範疇與時間點。
淺談美國建築能源科技法制政策發展近況 美國USPTO建議加強非法定重複專利之期末拋棄聲明,避免藥物專利叢林美國專利商標局(United States Patent And Trademark Office, USPTO)於2024年5月10日提議37 C.F.R §1.321修法草案並徵求公眾意見,旨在針對「非法定重複專利」(Nonstatutory-type double patenting)加強專利權「期末拋棄聲明」(Terminal Disclaimer)之要求,以減輕專利叢林現象。 專利權期末拋棄聲明係為避免專利申請人對於申請中,或已取得專利權之前申請案,利用些微變化再次申請專利,構成非法定重複專利,藉此延長專利期限。故現行規定要求於後案申請時應聲明專利權期限與前申請案同時到期,否則將不核准專利之申請。 USPTO提議於聲明中新增一項要求,亦即申請人應聲明後案申請之專利未藉由期末拋棄聲明直接或間接地綁定無效專利,否則同意所申請之專利無法執行(enforceable)。換言之,與後案申請專利所綁定的前案專利,若已被美國聯邦法院或USPTO判定為不具有專利性、專利無效,或是因技術實行上困難而放棄專利者,則透過專利權期末拋棄聲明綁定之專利將全部無法執行。藉此盼能有效去除產業競爭對手間濫用專利制度而建立龐大專利組合之行為模式,並促進研發創新和公平競爭。 此項修法草案被美國法學界認為是針對「藥品專利」而來,亦即USPTO欲藉此回應美國拜登政府致力打擊藥價之政策,並減輕長期受到關注之藥品專利叢林現象,以促進學名藥進入市場,達到降低藥品價格之目的。
英國資訊委員辦公室提出人工智慧(AI)稽核框架人工智慧(Artificial Intelligence, AI)的應用,已逐漸滲透到日常生活各領域中。為提升AI運用之效益,減少AI對個人與社會帶來之負面衝擊,英國資訊委員辦公室(Information Commissioner’s Office, ICO)於2019年3月提出「AI稽核框架」(Auditing Framework for Artificial Intelligence),作為確保AI應用合乎規範要求的方法論,並藉機引導公務機關和企業組織,評估與管理AI應用對資料保護之風險,進而建構一個可信賴的AI應用環境。 AI稽核框架主要由二大面向所構成—「治理與可歸責性」(governance and accountability)以及「AI特定風險領域」(AI-specific risk areas)。「治理與可歸責性」面向,係就公務機關和企業組織,應採取措施以遵循資料保護規範要求的角度切入,提出八項稽核重點,包括:風險偏好(risk appetite)、設計階段納入資料保護及透過預設保護資料(data protection by design and by default)、領導管理與監督(leadership management and oversight)、政策與程序(policies and procedures)、管理與通報架構(management and reporting structures)、文書作業與稽核紀錄(documentation and audit trails)、遵循與確保能力(compliance and assurance capabilities)、教育訓練與意識(training and awareness)。 「AI特定風險領域」面向,則是ICO特別針對AI,盤點下列八項潛在的資料保護風險,作為風險管理之關注重點: 一、 資料側寫之公平性與透明性(fairness and transparency in profiling); 二、 準確性(accuracy):包含AI開發過程中資料使用之準確性,以及應用AI所衍生資料之準確性; 三、 完全自動化決策模型(fully automated decision making models):涉及人類介入AI決策之程度,歐盟一般資料保護規則(General Data Protection Regulation, GDPR)原則上禁止無人為介入的單純自動化決策; 四、 安全性與網路(security and cyber):包括AI測試、委外處理資料、資料重新識別等風險; 五、 權衡(trade-offs):不同規範原則之間的取捨,如隱私保護與資料準確性; 六、 資料最少化與目的限制(data minimization and purpose limitation); 七、 資料當事人之權利行使(exercise of rights); 八、 對廣泛公共利益和權利之衝擊(impact on broader public interests and rights)。 ICO將持續就前述AI特定風險領域,進行更深入的分析,並開放公眾討論,未來亦將提供相關技術和組織上之控制措施,供公務機關及企業組織進行稽核實務時之參考。