英國創新局(Innovate UK)於2020年11月8日公布「創新持續貸款」(Innovation Continuity Loans)申請指南,作為COVID-19疫情應對計畫的工作項目之一,英國創新局將提供2.1億英鎊的貸款予在疫情影響下持續進行創新活動之國內中小企業。本貸款目標對象為因疫情導致出現資金缺口的中小企業,每一間公司將可申請25萬至160萬英鎊不等之創新持續貸款。
「創新持續貸款」源自2017年的創新貸款實驗計畫(Innovation loans pilot),藉由七項創新競賽篩選出約100位申請人,提供總額約7500萬英鎊的創新貸款;此次創新持續貸款則不採競賽方式,而是針對受疫情影響的中小企業創新活動,透過審查機制提供貸款予申請人。申請人資格為正在執行受創新局補助之創新活動者、過去36個月曾受創新局補助而目前正在進行其他創新活動者或是過去36個月並未獲得創新局補助之創新活動的執行、完成或延續性工作者,且確實因COVID-19疫情影響出現資金短缺之中小企業,即可向創新局申請創新持續貸款。
創新局將藉由審查申請者提交至今的工作成果與品質、受疫情影響程度與資金需求情形,評估該創新活動的後續發展潛力,向合格的申請人提供年利息僅3.7%的創新持續貸款。合格的申請人能在2022年3月31日或約定日期前,直到產品首次商業銷售為止,分階段領取貸款,以年利率3.7%計息;產品首次商業銷售後可額外有兩年的寬限期,在產品首次商業銷售或寬限期結束後五年內,申請人必須償還貸款,未償還部分則改採年利率7.4%計息。藉由低利貸款的資金挹注,協助從事新創活動之英國中小企業得以紓困以度過疫情難關。
本文為「經濟部產業技術司科技專案成果」
歐洲議會於2009年4月27日一讀通過GSM指令修正案(Directive 87/372/EEC),對開放900MHz 頻段(880~915MHz、925~960MHz)供UMTS/HSPA技術使用達成共識。 全球行動供應商協會GSA (Global mobile Suppliers Association)協會歡迎這項進展,宣稱行動寬頻系統HSPA應用於900MHz段將可為網路營運商帶來實質的效益。因為相較於目前多數3G系統使用的較高頻率2100MHz,UMTS系統使用900MHz頻段能讓網路營運商以更低的成本、更好的電波穿透率進行網路布建。 根據UMTS論壇,雖然在歐洲900MHz係保留給GSM系統使用,但UMTS900-HSPA系統之商業布建與運轉已經在如澳洲、愛沙尼亞、芬蘭、冰島,甚至泰國等國家開始進行。 瑞典是最近一個宣布將開放900MHz頻段供3G使用之國家。其主管機關PTS於2009年3月19日宣稱將在執照更新時,允許仍以本頻段提供GSM服務的營運商以新的科技提供新的行動寬頻服務。 本案預計於2009年5月6日進行表決。
RFID應用與相關法制問題研析-個人資料在商業應用上的界限 何謂「中國製造2025」?中國大陸國務院李克強總理於2015年國務院常務會議研提「中國製造2025」政策,希望提升中國大陸製造業的發展。該政策為因應智慧聯網(Internet of Thing, IoT)的發展趨勢,以資訊化與工業化整合為主,重新發展新一代資訊技術、數控機床和機器人、航空航天裝備、海洋工程裝備及高技術船舶、先進軌道交通設備、節能與新能源汽車、電力裝備、新材料、生物醫藥及高性能醫療器材、農業機械裝備等10大領域,以強化工業基礎能力,提升技術水平和產品品質,進而推動智慧製造、綠色製造。而有別於德國所提出的工業4.0計畫,中國大陸所提出的是理念,係以開源開放、共創共享的智慧聯網推動創新思維。
美國國家標準暨技術研究院規劃建立「人工智慧風險管理框架」,並徵詢公眾對於該框架之意見美國國家標準暨技術研究院(National Institute of Standards and Technology, NIST)為管理人工智慧對於個人、組織以及社會所帶來之風險,於2021年7月29日提出將建立「人工智慧風險管理框架」(Artificial Intelligence Risk Management Framework, AI RMF)之規畫並徵詢公眾意見,截止日為9月15日,並預計於10月發布正式報告。 依照NIST說明,公眾所建議之人工智慧風險管理框架,可促進人工智慧之可信賴性,其中包含如何應對並解決人工智慧於設計、發展及使用過程中所遭遇之「精確度」(accuracy)、「可解釋性」(explainability)、「偏見」(bias)等議題。此外,上開管理框架預計為非強制性、供企業自願性使用於人工智慧設計、發展、使用、衡量及評估之人工智慧標準。 依現有公眾意見徵詢結果,其中DeepMind公司建議於人工智慧設計初期,必須預先構思整體系統之假設是否符合真正社會因果關係。舉例言之,當設計一套可預測民眾健保需求程度之系統時,如輸入參數僅考量民眾於醫療上的花費,將使僅有可負擔較高醫療費用之民眾被歸類為健保需求程度較高者,從而導致健保制度排擠經濟負擔程度較差之公民,故在設計系統時,應從預先設定之假設事實反面(counter-factual)思考並驗證是否會產生誤差或公平性之問題(例如預先思考並驗證「醫療費用支出較低之民眾是否即可被正確歸類為健保需求度低之民眾」)。惟進行上述驗證需要大量社會資料,因此DeepMind也建議NIST應建立相關機制,使這些社會資料可以被蒐集、使用。 此外,亦有民眾建議管理框架應有明確之衡量方法以及數值指標,以供工程界遵循。同時鑒於人工智慧發展極為快速,未來可能有不同於以往之人工智慧類型出現,故亦建議NIST應思考如何在「建構一套完整且詳細之人工智慧治理框架」與「保持人工智慧治理框架之彈性與靈活性」之間取得平衡。 最後,目前也有許多徵詢意見指出,許多人工智慧治理之目標會相互衝突。舉例言之,當NIST要求人工智慧系統應符合可解釋性,則人工智慧公司勢必需要經常抽取人工智慧系統中之「數據軌跡」(audit logs),惟數據軌跡可能被認為是使用者之個人資料,因此如何平衡或完善不同治理框架下之目標,為未來應持續關注之議題。