歐盟資通安全局(European Union Agency for Cybersecurity, ENISA)於2020年11月發布《物聯網安全準則-安全的物聯網供應鏈》(Guidelines for Securing the IoT – Secure Supply Chain for IoT),旨在解決IoT供應鏈安全性的相關資安挑戰,幫助IoT設備供應鏈中的所有利害關係人,在構建或評估IoT技術時作出更好的安全決策。
本文件分析IoT供應鏈各個不同階段的重要資安議題,包括概念構想階段、開發階段、生產製造階段、使用階段及退場階段等。概念構想階段對於建立基本安全基礎非常重要,應兼顧實體安全和網路安全。開發階段包含軟體和硬體,生產階段涉及複雜的上下游供應鏈,此二階段因參與者眾多,觸及的資安議題也相當複雜。例如駭客藉由植入惡意程式,進行違背系統預設用途的其他行為;或是因為舊版本的系統無法隨技術的推展進行更新,而產生系統漏洞。於使用階段,開發人員應與使用者緊密合作,持續監督IoT設備使用安全。退場階段則需要安全地處理IoT設備所蒐集的資料,以及考慮電子設備回收可能造成大量汙染的問題。
總體而言,解決IoT資安問題,需要各個利害關係人彼此建立信賴關係,並進一步培養網路安全相關專業知識。在產品設計上則須遵守現有共通的安全性原則,並對產品設計保持透明性,以符合資安要求。
英國國家統計局(Office for National Statistics)轄下之政府資料品質中心(Government Data Quality Hub)為實踐英國數位、文化、媒體暨體育部(Department for Digital, Culture, Media & Sport)發布之《國家資料戰略》(National Data Strategy),於2020年12月3日釋出《政府資料品質框架》(The Government Data Quality Framework),以達成國家資料戰略中「資料基礎(Data Foundation)」之核心目標。該框架提出「資料品質原則」(Data quality principles),旨在解決目前政府資料品質低落的問題。該原則包含以下五點: 一、確保資料品質:機關內部應建立有效的資料治理機制,例如培訓員工具備管理資料的能力、持續改進資料品質等。 二、了解使用者需求:機關應將使用者對資料品質的需求視為優先處理事項。 三、評估資料於資料生命週期各階段之品質:機關應密切關注資料於生命週期各階段之品質,並與使用者及利益關係人交換意見。 四、持續溝通資料品質:機關應持續與使用者交流資料品質現況,提供使用者有效的文件及中繼資料(metadata)。 五、了解造成資料品質低落的主因:分析造成資料品質低落的根本原因,從源頭徹底解決資料品質問題。 英國國家統計局政府資料品質中心希望藉由本框架揭示的資料品質原則,提升政府機關人員主動辨別及解決資料品質問題的能力,以改善政府資料品質、為人民帶來更高品質的資料,釋放資料價值並促進社會經濟發展。
新加坡通過「線上安全(救濟與問責)法案」強化對抗線上傷害新加坡國會於 2025 年 11 月5日三讀通過「線上安全(救濟與問責)法案」(Online Safety (Relief and Accountability) Bill, OSRA),希望透過「賦權受害者」與「強化平臺問責」來對抗日益嚴重的線上傷害事件。OSRA旨在補充個人在面對有害的線上行為(Online Harmful Activity)傷害時的救濟途徑,並設置「線上安全專員(Commissioner of Online Safety)」為處理投訴與發布救濟指令的專責機關。 OSRA明確定義了多種有害的線上行為,包括針對deepfake的「不實內容濫用」(Inauthentic material abuse),以及惡意公開他人隱私的「人肉搜索」(doxxing),而為了讓損害即時受到控制,線上安全專員在接獲國民投訴並調查評估後,可直接發出具法律效力的指令(Directions),要求平臺移除、隱藏特定內容,或限制惡意帳號的互動;若平臺不遵守指令,線上安全專員亦得向電信業者發出阻斷特定服務,或向應用程式商店發出下架特定應用程式的命令(Orders),無正當理由違反指令或命令皆有可能構成刑事責任。 此外,OSRA亦擴張了平臺的民事責任,當受害者依指定方式向平臺發出「線上傷害通知」後,若平臺未能在合理期間內採取行動,受害者得逕向平臺經營者或網站管理者提起民事訴訟要求損害賠償,若平臺無故怠慢,法院得判決加重損害賠償,希望藉此敦促平臺建立更敏捷的線上傷害控制機制。 值得注意的是,OSRA宣告了廣泛的長臂管轄機制,為保障新加坡國民的權益,不僅法院對OSRA規範的民事、刑事事件有管轄權,線上安全專員發布指令與命令的對象亦不限於境內,表現對抗全球線上傷害的強烈企圖。
金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。
歐盟環保新指令 科技業2,000億產值受衝擊歐盟將於今年8月實施兩大環保新指令,廠商生產的電機電子產品,包括材料、元件、製程等,都必須符合可回收55%至75%的規定,才准輸往歐盟,預估將影響國內科技業者輸出產值達新台幣2,000億元。 台灣區電機電子公會調查,中大型電子業廠商大都準備完成,中小型業者則未必。前年我國電子產品輸出金額達1兆元,屬於中小型零件廠製造的產值超過三分之一,金額達3,500億至4,000億元。經濟部委託工研院調查,國內可能面臨重大衝擊,預估有44項產品受管制,占歐盟管制81項產品的一半以上。業者的回收成本將增加3%至5%,調整產品材質及零件成本也提高5%至10%。 歐盟實施的環保指令分別是:廢電機電子指令(WEEE)、危害物質限用指令(RoHS)。前者是針對10大廢電機電子品,建立回收體系,並達成法定一定的回收率55%至75%,要求至2006年12月,每年每人回收4公斤。後者是國際企業必須自我要求8月完成停止使用含有重金屬鉛、汞等六種化學物質的電子產品,如IC封裝、電腦塑膠零件等。2006年7月將全面禁止輸入。