5G汽車協會發布《道路使用者保護白皮書》

  5G汽車協會(5G Automotive Association, 5GAA)於2020年8月24日發布「弱勢道路使用者保護白皮書」(Vulnerable Road User Protection),點出目前道路交通安全對相關道路使用者保護不足,同時揭示未來車聯網(V2X)可提供整體用路人更安全之道路交通環境。

  白皮書指出,道路安全是交通政策關鍵,應透過科技技術與政策制定,共同實現道路安全目標。而根據目前統計數據,弱勢道路使用者(Vulnerable Road User,以下簡稱VRU),包含:「行人」、「騎自行車者」、「騎電動車者」、「道路施工者」、「輪椅使用者」及「滑板或是單輪車使用者」,其占交通事故之傷亡比例最高,幾乎超過半數之死亡人數均為VRU,未來更可能因環境或與健康因素,使道路交通使用者數量不斷提升,對VRU之保護將成為未來各國交通之關鍵。

  技術層面,則是車輛感測器偵測VRU、路側設備(Roadside Unit, RSU)、行動邊緣計算技術(Mobile Edge Computing, MEC)等,並進一步應用於車聯網下之不同案例情況:(1)高度風險區域:例如車輛進入行人密度極高的地區,透過感測器發出警訊,以即時警惕人車彼此存在,降低視線死角之事故發生率。(2)VRU與車輛透過裝置溝通:如車輛與VRU之間透過手機等設備傳輸相關資料並通訊。(3)車輛透過安全演算系統與VRU及各項設施交換訊息:此項涉及車聯網通訊應用下,車與車(V2V)和車與交通基礎設施(V2I)通訊,透過C-V2X PC5通訊技術軟體,使車輛、基礎設施與VRU之隨身電子設備之間得以進行通訊,降低事故碰撞發生。

  綜上,未來應建立國際通用的車聯網之弱勢道路使用者保護標準,而非因區域而不同之標準,如目前美國汽車工程師協會之個人安全訊息標準(Personal Safety Messages, SAE PSM)及歐盟電信標準協會之弱勢道路使用者分布(Vulnerable Analysis Mapping , ETSI VAM),兩者在保護上即有所差異。VRU之保護服務是未來車聯網應用之關鍵與道路交通安全核心目標之一,相關系統與感測技術亦在不斷提升,未來更能融合感測器技術,並預測行人可能路徑,將全面提升道路安全。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
※ 5G汽車協會發布《道路使用者保護白皮書》, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8590&no=55&tp=5 (最後瀏覽日:2026/01/20)
引註此篇文章
你可能還會想看
何謂「國家科學技術發展計畫」?

  「國家科學技術發展計畫」為政府考量國家發展方向、社會需求情形以及區域均衡發展,而擬定之國家科學技術政策與推動科學技術研究發展之依據。依照《科學技術基本法》第10條之規定,國家科學技術發展計畫之訂定,應參酌中央研究院、科學技術研究部門、產業部門及相關社會團體之意見,並經全國科學技術會議討論後,由行政院核定。   全國科學技術會議每四年召開一次,最近一次會議為2013年的「第九次全國科技會議」,該次會議通過了民國102-105年的「國家科學技術發展計畫」,針對我國科技發展提出7項目標、27項策略及58項重要措施。7項目標包括:提升臺灣的學研地位、做好臺灣的智財布局、推動臺灣永續發展、銜接上游學研與下游產業、推動由上而下的科技計畫、提升臺灣科技產業創新動能、解決臺灣的科技人才危機等。

金融穩定委員會報告指出金融領域採用AI之模型、資料品質與治理風險

.Pindent{text-indent: 2em;} .Noindent{margin-left: 2em;} .NoPindent{text-indent: 2em; margin-left: 2em;} .No2indent{margin-left: 3em;} .No2Pindent{text-indent: 2em; margin-left: 3em} .No3indent{margin-left: 4em;} .No3Pindent{text-indent: 2em; margin-left: 4em} 金融穩定委員會(Financial Stability Board, FSB)於2024年11月14日發布《人工智慧對金融穩定的影響》報告,探討人工智慧(Artificial Intelligence, AI)在金融領域的應用進展及對全球金融穩定的影響,分析相關風險並提出建議。 報告指出AI具有提升效率、加強法規遵循、提供個人化金融產品及進階資料分析等益處,但同時可能加劇某些金融部門的脆弱性(Vulnerability),進而構成金融穩定風險。報告特別提出之脆弱性包括:「第三方依賴及服務供應商集中化」、「市場相關性」、「資安風險」,以及「模型風險、資料品質和治理」。 在模型風險、資料品質與治理中,廣泛應用AI可能導致模型風險上升,因某些模型難以驗證、監控及修正,且模型的複雜性與透明性不足將增加尋找具獨立性和專業知識的驗證者的挑戰。此外,在大型語言模型(Large Language Model, LLM),大規模非結構化資料的使用及訓練資料來源的不透明性,使資料品質評估更加困難。特別是在預訓練模型(Pre-trained Model)中,金融機構對眾多資料來源的評估方式不熟悉,進一步增加管理難度。 若金融機構未建立健全的治理架構以審查AI的使用及其資料來源,模型風險與資料品質問題將難以控制。金融機構有責任應對與AI相關的模型風險和資料品質挑戰,包含對模型進行驗證、持續監控、執行結果分析和評估資料品質的預期要求。 報告呼籲各國金融主管機關加強對AI發展的監測,評估現行金融政策框架是否充分,並增強監管能力。建議可定期或不定期調查AI應用情形,並透過報告及公開揭露制度獲取相關資訊。此外,主管機關可考慮利用監督科技(SupTech)及監管科技(RegTech)等AI驅動工具強化監管效能,以應對AI在金融領域帶來的挑戰與風險。

Novartis被質疑濫用美國FDA獎勵研發治療被忽視熱帶疾病藥物之制度

  國際藥廠Novartis被指控濫用美國食品藥品管理局(the U.S. Food and Drug Administration,簡稱FDA)為鼓勵藥廠投入研發被忽視疾病治療藥物所設立的一套獎勵制度。   這套制度是根據2007年美國國會所通過之美國食品藥品管理法修正案(the Food and Drug Administration Amendments Act of 2007)而創設,主要是給予向FDA申請治療其表列之被忽視熱帶疾病(例如瘧疾、血吸蟲病、利什曼病等)藥品查驗登記並獲通過之申請者一份所謂「藥品優先審查劵」(priority review voucher),讓該申請者可以用於之後所提出的人類藥品查驗登記申請,而得以享有優先審查之權利。   這個所謂「藥品優先審查劵」對於藥廠來說可說是價值非凡,因為藥品查驗登記程序正常情況往往超過10個月以上,但是適用優先審查程序之申請案,卻可以有九成左右在6個月內就獲得通過,這對於藥廠的好處在於,其可以比其他競爭者更快地將其所生產藥品上市販售。   Novartis於2009年4月獲得FDA通過其就治療瘧疾藥物Coartem之查驗登記申請,而成為適用此獎勵制度之首例並獲得「藥品優先審查劵」。Novartis的行為之所以招致批判,因為其所申請之藥物Coartem並非是針對治療瘧疾所研發出來的新藥,其從1999年起便已在部分國家被許可使用,只是該藥物在美國從未被申請查驗登記而獲准通過。由於上述獎勵制度並未言明是針對新開發之治療熱帶疾病的藥品,所以Novartis的動作可以符合其要件並獲得獎勵,但此舉卻有鑽法律漏洞之嫌。

標準制定組織成員之專利揭露義務

  標準制定組織為了提高產業競爭,防止標準制定組織之會員們,在獲得涵蓋產業標準的專利權後,以壟斷性手段壓迫其他競爭對手,故通常會以智慧財產權政策要求參加的會員揭露其被標準制定組織選擇寫入標準的專利。其重要內容通常包括:   1. 必要專利揭露 許多標準制定組織皆有規定,標準必要專利權人應依以誠實信用及適當方式進行揭露之義務,例如IEEE及ETSI 。即對於討論中的技術標準,必須對標準制定組織及其參與者公開揭露所持有的必要專利。揭露的基本目的主要有三項 :   (1) 使標準開發相關工作小組會員可以掌握納入標準之多項候選技術的基本資訊(例如專利技術價值、成本及可行性等等),並做出適當選擇。   (2) 藉此得知須提出授權聲明或承諾的必要專利權人。   (3) 藉此讓必要專利的潛在實施者得知應向那些必要專利權人獲取必要專利相關資訊。   2. 事前揭露授權條款(ex-ante disclosure of licensing terms)   事前揭露授權條款係一種受保護之技術在被採納為標準必要專利前,將授權條件的揭露的機制,目前IEEE及ETSI採行自願性揭露方式。與必要智財權的揭露及授權聲明不同,其主要的目的在於讓標準制定委員會將技術採納為標準前,可以根據所揭露的授權條件來決定有那些技術在符合權利人授權條件下,有哪些技術可以納入標準,又有哪些不同替代技術,並據以作成決定 。

TOP