網球選手「丹麥甜心」Caroline Wozniacki在2019年底於社群媒體Instagram發布退休文章並附上一張其青少年職業賽之發球特寫照片,該爭議照片為丹麥攝影師 Michael Barrett Boesen(後稱Boesen)所拍攝,爾後聯合體育出版社United Sports Publications(後稱USP)以嵌入含有該爭議照片之發文截圖報導該選手退休的新聞並刊載於長島網球雜誌(Long Island Tennis Magazine)之網站上,然而USP並未獲得Boesen之允許或授權使用,因此Boesen於2020年3月對USP提出著作權侵權訴訟。
美國紐約東區聯邦地區法院法官根據美國著作權法第107條(17 U.S.C. § 107)之合理使用原則:(1)使用的目的和性質、(2)受著作權保護作品的性質、(3)實質使用原始作品的比例、以及(4)該著作權物的使用對市場的影響等四項判斷要素,逐一檢視本爭議。
針對要素一,法官參酌相似前案,認為USP之新聞並非單純使用Boesen的照片,而是嵌入該爭議照片之發文截圖,且未針對該爭議照片內容描述該選手之青少年網球生涯,已賦予既有著作新的或不同元素或有其他使用目的,而非替代既有著作之原始用途,而認定USP充分地轉化該攝影著作、屬合理使用;而要素二,法官認為該爭議照片同時具資訊性與創造性元素,而該爭議照片除了在網球選手發文中公開之外,Boesen亦已公開於其社群媒體與網站中,使該爭議照片之資訊性成份相對較高、其合理使用範圍較大;至於要素三,USP之新聞係嵌入網球選手之退休發文,且保留選手頭像簡介、發文內容等社群媒體之所有標記,並未直接對該爭議照片進行編輯,因此使用該攝影著作之比例相對低;最後要素四,USP之報導非單獨呈現該爭議照片而係連同網球選手退休發文一同展現,此外該爭議照片係經過裁切且解析度低,實質上難以取代原始攝影著作之市場價值。綜上所述,法官最終於同年11月初作出判決,認定USP嵌入具Boesen攝影著作發文之報導屬合理使用。
日本於2021年5月19日公布新修正之《個人資料保護法》(個人情報の保護に関する法律),並預計於2022年4月正式施行。修法重點如下: 一、法律形式及法律管轄一元化:現行日本個人資料保護法制依適用對象分為《個人資料保護法》、《行政機關個人資料保護法》(法律行政機関の保有する個人情報の保護に関する法律)、《獨立行政法人等個人資料保護法》(独立行政法人等の保有する個人情報の保護に関する法律)及各地方政府個人資料保護條例等不同規範,修法後將統一適用《個人資料保護法》,並受到個人資料保護委員會之監督管理。 二、整合醫療及學術領域之規範:目前醫療及學術機構因隸屬於公部門或私部門適用不同規範,修法後無論公私立醫院、大學等原則上均適用相同規範。 三、調整學術研究之豁免規定:基於學術研究自由為憲法保障之基本權,現行《個人資料保護法》明文規定學術研究一律排除適用本法規定,惟2019年日本取得《歐盟一般資料保護規則》(GDPR)適足性認定之範圍未包含學術研究,故修法調整豁免規定為例外情形排除適用,如變更利用目的、取得敏感性個人資料及提供予第三者之情形。 四、整合個人資料及匿名化資料之定義:修法將公部門與私部門對個人資料之定義,整合為包含「易於」與其他資料比對後得以識別特定個人之要件。而《行政機關個人資料保護法》所稱「去識別化資料」(非識別加工情報),與《個人資料保護法》所稱「匿名化資料」(匿名加工情報),修法後將統一稱為「匿名化資料」。 為銜接上述修法內容,日本個人資料保護委員會自2021年8月起陸續針對《個人資料保護法施行令》、《個人資料保護法施行規則》及個人資料保護法相關指引公開徵求意見,後續值得持續觀察日本個人資料保護法制發展。
歐洲專利局發布人工智慧與機器學習專利審查指南正式生效歐洲專利局(European Patent Office, 下稱EPO)於2018年11月1日發佈新版專利審查指南已正式生效。此次新版的焦點為Part G, Chapter II, 3.3.1關於人工智慧(Artificial Intelligence, AI)與機器學習(Machine Learning, ML)的可專利性審查細則。 在新版審查指南Part G, Chapter II, 3.3中指出數學方法本身為法定不予專利事項,然而人工智慧和機器學習是利用運算模型和演算法來進行分類、聚類、迴歸、降維等發明,例如:神經網路、遺傳演算法、支援向量機(Support Vector Machines, SVM)、K-Means演算法、核迴歸和判別分析,不論它們是否能夠藉由數據加以訓練,此類運算模型和演算法本身,因具有抽象的數學性質而不具專利適格性。 其中,EPO亦針對人工智慧和機器學習相關應用舉例下列特殊情形,說明可否具備發明技術特徵: (一)可能具技術性 在心臟監測儀器運用神經網路辨別異常心跳,此種技術為具有技術貢獻。 基於低階特徵(例如:影像邊緣、像素數值)的數位影像、影片、音頻或語言訊號分類,屬於分類演算法的技術應用。 (二)可能不具技術性 根據文字內容進行分類,本身不具技術目的,而僅是語言學的目的(T 1358/09) 對抽象數據或電信網路數據紀錄進行分類,但未說明所產生分類的技術用途,亦被認定本身不具技術目的,即使該分類演算法的數據價值高(例如:穩健性)(T 1784/06)。 在新版審查指南中亦指出,當分類方法用於技術目的,其產生之訓練集(training set)和訓練分類器(training the classifier)的步驟,則能被視為發明的技術特徵。 近年來,人工智慧技術的應用分佈在我們的生活中,無論是自駕車、新藥開發、語音辨識、醫療診斷等,隨著人工智慧和機器學習技術快速發展,新版的審查指南將為此技術訂定可專利性標準,EPO未來要如何評判人工智慧和機器學習相關技術,將可透過申請案之審查結果持續進行關注。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
歐盟對於不可申請專利的基本生物學方法做出新解釋大多數國家是認為動植物為法定不得授予專利之標的,歐盟以往因為歐洲專利公約實施細則(Implementing Regulations to the Convention on the Grant of European Patents,下簡稱實施細則)跟擴大上訴委員會(the Enlarged Board of Appeal,簡稱EBA)決定不一致而造成爭議,EBA於2020年5月做出的新決定,對於動植物是否為可授予專利之標的做出一致性解釋。 在歐洲專利公約(European Patent Convention,簡稱EPC)第53條第2款規定用以生產動植物的基本生物學方法不可授予專利,並於2017年生效的實施細則第28條第2項將其進一步擴張解釋成,僅運用基本生物學方法所產生的動植物不可授予專利,這與EBA在2015年所做出的決定(G 2/12、G 2/13)並不一致,在2015年的決定中提到,運用基本生物學方法來界定動植物的請求項仍可以被接受,因此實施細則第28條第2項與2015年的決定產生衝突。 於2019年,技術上訴委員會(Technical Board of Appeal)在案例T 1063/18中發現了這個問題,並提到EBA討論,EBA表示,考慮到法條涵義可能因時間產生變化,需要對EPC第53條第2款進行動態解釋(dynamic interpretation),實施細則第28條第2項與EPC第53條第2款並未矛盾,而是進一步擴展為,僅通過基本生物學過程,或是由基本生物學方法界定動植物之情況,皆屬於不可授予專利之情況,而推翻之前的決定。而為維持法律安定性,本決定(G 3/19)對於2017/07/01前生效或申請的案件並不具效力。 「本文同步刊登於TIPS網站(https://www.tips.org.tw )」
環保署提京都議定書因應對策 研擬溫室氣體管制法管制全球溫室氣體排放以遏制全球暖化的京都議定書在二月十六日生效,環保署將著手推動溫室氣體管制法的法制作業工作,目前正研擬溫室氣體管制法,規劃將由中央主管機關擬訂「全國溫室氣體防制基本方案」,同時確立政府各部門、企業及國民溫室氣體減量合作及分工;並規範推動國家溫室氣體盤查、登錄及排放清冊建置;授權訂定排放管制、財稅誘因及排放交易制度;推動溫室氣體減量技術研發等;同時推動教育宣導、推廣及鼓勵使用高能源效率產品與節約能源生活方式。 環保署署長張祖恩強調,雖然現有京都議定書條文中沒有貿易制裁或違約罰款的條款,但在合作共生的理念下,我國沒有理由當一個國際溫室氣體減量列車的搭便車乘客(free rider),應在公約精神下,積極推動節約能源、再生能源開發、提昇能源效率等工作。 環保署已於2004年度起首度整合產業、運輸及住商部門領域,辦理溫室氣體盤查管理工作,建立盤查規範登錄平台,積極推動國際標準組織ISO14064驗證系統,並遴選電力、石化、鋼鐵、造紙、水泥、光電半導體等業別12家示範廠商,推動6種溫室氣體全面盤查及減量工作,其中排放大戶台灣電力股份有限公司、中國鋼鐵股份有限公司、中國石油股份有限公司均已參與環保署試行盤查減量計畫。對於溫室氣體排放持續成長的住商部門,環保署協調相關部會規劃成立技術服務團,輔導既有建築物推動節約能源及提昇能源效率工作;對於運輸部門,除持續推動大眾運輸系統外,環保署將與相關部會加強推動油電混合小客車之引進。