世界經濟論壇2020年十大新興科技報告,與健康和環境相關之前瞻科技發展備受矚目

  世界經濟論壇(World Economic Forum, WEF)於2020年11月10日發表「2020年十大新興科技報告」(Top 10 Emerging Technologies 2020),報告中提出10個近年出現,且被認為在未來5年內最具有正面改變社會潛力的新興科技,並說明除了關注這些科技帶來的改變外,也應關注其引發的風險。

  2020年全球最密切關注的議題為健康與氣候變遷,也因此2020年被認為具有發展潛力的新興技術均與這兩個議題有關,包含:(1)無痛注射與測試用的微針技術(Microneedles);(2)太陽能化學(Sun-Powered Chemistry)利用可見光將二氧化碳轉換為普通材料,可作為合成藥物、清潔劑、化學肥料和紡織品的材料;(3)虛擬患者(Virtual Patients),替代人類做人體臨床試驗,比一般試驗更快更安全;(4)空間計算(Spatial Computing)以強化虛擬生活和現實的連結;(5)數位醫療(Digital Medicine)應用程式之發展可以診斷甚至治癒疾病;(6)電動飛航(Electric Aviation)裝置,例如電動推進器可以清除直接碳排放(direct carbon emissions),減少九成的燃料成本、五成維護成本和七成噪音汙染,降低整體航空旅程環境污染並提高效率;(7)低碳水泥(Lower-Carbon Cement)的發展作為氣候變遷下的新興建築材料;(8)量子感測(Quantum Sensing)做為高精準度計算方式,將於未來三到五年進入市場,並首重用於醫療和國防應用產業上;(9)新興零碳能源如綠氫(Green Hydrogen),可補充風力和太陽能;(10)全基因合成(Whole-Genome Synthesis)作為下一代細胞工程(cell engineering)尖端科技,使未來醫學得以治癒更多遺傳疾病。

  報告中指出,雖然這些新興技術具有改變社會和產業的潛力,但卻無法確保技術本身是否能被妥善使用(Good is not guaranteed)。首先,這些技術仍需要龐大資金以達到成熟度和可利用的價格點(price point),才能與相關產業達成整合化、規模化。此外面對這些新興科技,決策者必須迅速針對可能引發的風險提出對應策略,例如數位醫療在手機應用程式上會引發政府許可、資料利用、隱私等問題。因此,政策與產業如何協作,使用相關科技、限制濫用並控制技術中風險等,是面對是類新興科技應積極考量的方向。

本文為「經濟部產業技術司科技專案成果」

相關連結
你可能會想參加
※ 世界經濟論壇2020年十大新興科技報告,與健康和環境相關之前瞻科技發展備受矚目, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8600&no=55&tp=1 (最後瀏覽日:2025/12/07)
引註此篇文章
你可能還會想看
歐盟傳統作物與基因改造農作物之共存門檻制度受到歐洲法院的挑戰

  歐洲法院(European Court of Justice)於2011年9月6日作出一項指標性的判決,係針對蜂蜜或食物補充品(Food Supplement)中,若其花粉成分受到基因改造作物之污染,則無論該污染是有意或無意所造成者,未經審核前均不得任意販售。據此,蜂蜜或食物補充品的生產者得就因不得販售所產生之損失向污染源或政府求償。   該案原為德國的養蜂人認為其生產之蜂蜜中的花粉受到鄰近距離五百公尺的基因改造農作物試驗之污染,而該試驗即為巴伐利亞政府所核准之基因改造農作物試驗(1998年EU核准的MON 801 maize),故而對巴伐利亞政府提出求償。原德國法院在不能確定蜂蜜是否涵蓋在基因改造規範的情況下,轉而尋求歐洲法院的判決。   該判決等於是挑戰歐盟現有的對於傳統作物及基因改造作物共存的政策與法規(GMO, Co-Existence),歐盟就該共存的門檻標準設定在0.9%,若產品含基因改造成分0.9%以上,需標示為基因改造產品,惟標示為基因改造食品對於傳統農作物之種植可能帶來銷售上的不利。而在共存門檻之下,含有基因改造成分的傳統農作物還是有可能因含有基因改造的成分而影響銷售並帶來損失;又因在共存門檻之下,作物含有基因改造成分是無法向政府或是來源求償的。另一方面,該判決亦影響出口蜂蜜至歐盟的國家,如大量生產蜂蜜且核准種植基因改造作物的阿根廷等國家。   對於基因改造食品採取保守態度的歐盟,近年來有意將是否禁止基因改造農作物以及共存門檻的比率下放給成員國自行決定,在成員國間形成兩極化的意見,而該項提案目前雖已經歐盟議會背書,但尚未由各成員國通過。這樣的判決令共存門檻的制度形同具文,且可能會使更多國家傾向禁止種植基因改造農作物,而不利於基因改造科技的研發。

德國通過電力市場發展法和能源轉型數位化法以因應下階段

  德國聯邦議會通過電力市場發展法(Gesetze zur Weiterentwicklung des Strommarktes)和能源轉型的數位化法(Gesetze zur zur Digitalisierung der Energiewende)。   本次新制定之電力市場法,是90年代後德國電力市場重大發展。目的在於調適電力市場,以配合當今德國快速成長的再生能源發電比例。為使電力供應繼續保持合理價格和電力供應可靠安全,在確認未來電力市場發展繼續朝向增加越來越多風力發電和太陽能發電之路線的同時,預先架構法制環境,為將來配合運用發電端的彈性、需求端彈性與電力儲存技術,確定電力市場發展方向和框架條件。在上述等規範之下,電力交易商有義務,亦即售電者應該設法建構自身電量儲備作為因應,在電網需要時饋入電網,為供電安全提供必要準備。另外在注重必要容量儲備上之投資外,亦強調電力批發市場上的自由定價原則,維持整體市場所需容量在均衡、平衡之穩定電力供應狀態。   另外,能源轉型數位化法則是使電力部門成為創新之有效制度工具。蓋其作為基礎建設,使新創業模式,例如藉由與消費者持有之再生能源發電設備之連結,發展出新商業獲利模式。修法核心內容係引入智慧量測系統,功能在於作為安全的通訊平台,使電力供應系統能夠配合能源轉型發揮最大功用。   最後,為配合巴黎協定後德國環境政策,在遏止溫室效應氣體的實施具體作為,電力市場法一部份重要內容在於暫時停止褐煤電力電廠發電運轉。配合電網安定的調度需求,僅在指定時間內,使其成為電力安全預備,並最終不再使用褐煤發電,以實現到2020年德國在電力部門的氣候目標。   德國完成電力市場法,結束由“綠皮書”和“白皮書”開始的進程,與鄰國經過廣泛的公眾諮詢和協調會議之後,最終選擇電力市場2.0與市場自由定價的機制,而反對所謂的容量市場。決定性的因素在於,如此一來政策所需花費的成本較另一選項來得低,且更容易使德國融入歐洲電力單一市場架構。依據本法新創建的容量儲備,將與電力市場中其他電力嚴格區分,專門作為應對突發事件額外的安全網。   在「區域合作聯合聲明」中,德國經濟與能源部長於2015年6月8日與11鄰國商討後決定,保證在電力短缺和高電價時,德國側將提供電力的自由定價和跨境交易,如此一來可用更低成本以生產電力,德國和周邊國家的內部單一市場在此看到了巨大的經濟優勢。   與歐洲各國相較,德國在電力供應安全議題上處於領先地位。再加上新的電力市場法,預計未來幾年電力市場能夠達到持續健全發展之目標。

德國聯邦工業聯盟與Noerr法律事務所所公布「工業4.0 – 數位化進程面臨之法律挑戰」意見報告

  德國聯邦工業聯盟(Bundesverband der Deutschen Industrie)與Noerr法律事務所於2015年11月共同公布「工業4.0 – 數位化進程面臨之法律挑戰」(Industrie 4.0 – Rechtliche Herausforderungen der Digitalisierung)意見報告。該報告透過德國聯邦工業聯盟與Noerr法律事務所訪談德國數家企業法務部門,以釐清業界在邁入工業4.0轉型下會遇到的法律議題,並對此議題提出法律意見。   此報告針對工業4.0相關法律議題提出以下建議: 1.資料保護:業者可透過技術性設計達到資料保護的目的,例如隱私設計(Privacy by Design)。另,繼歐盟法院針對安全港判決的裁定,業者應積極關注歐盟第29條資料保護工作小組針對跨國資料傳輸的指引或德國聯邦資料保護委員(Datenschutzbeauftragten des Bundes)針對跨境資料保護規範的建議。 2.資料產權:在立法上不應急於規範管制,有恐危及企業資料分享的空間。建議企業間可透過雙方性契約規定資料的使用權 3.資訊安全:雖支持於2015年7月通過之德國資訊系統安全法(IT-Sicherheitsgesetz),強制性業者履行在遭資安攻擊時履行通報義務(Meldepflicht)。但是,若能實施以業者本身主動完成資安保護措施之鼓勵機制,則更能積極性的鼓勵業者履行其資安義務。 4.智慧財產權:標準必要專利的授權及使用係業者在工業4.0體系中,特別在系統的互通性上,非常重要的一環。在法制環境上應讓各個業者,在一定的條件下,均享有標準必要專利授權。 5.產品責任:因智慧工廠下之自治系統(autonome Systeme)有自主決定的能力,而因其所導致的民事糾紛,可透過新民事責任概念的架構所解決,並不一定要將該自治系統視為一獨立的數位法人(ePerson)。

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限

用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).

TOP