日本發布Startup交易習慣之現況調查報告最終版,統整新創事業實務上遭遇不公平競爭行為之態樣

  日本公平交易委員會於2020年11月27日發布「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),主旨為揭露其國內新創事業於交易市場遭遇不公平競爭行為的調查結果。本報告的作成目的,係基於新創事業發展具備推動創新、活絡國內經濟之潛力,故針對各類型新創事業在參與市場交易時,有無因其與相對人間的不對等地位(因需仰賴相對人提供資金或資源),遭遇不公平競爭的情況進行調查。同時,本報告所公布的調查結果,將會作為未來訂定新創事業與合作廠商間契約指引的參考依據,以圖從制度面改善新創事業參與市場的競爭環境。

  本報告書所調查的交易態樣,聚焦於容易出現不公平競爭行為的契約或競爭關係,並分別整理主要的行為態樣如下:(1)新創事業與合作廠商間之契約:要求新創事業揭露營業秘密、約定對合作廠商有利的保密協議條款、無償進行概念驗證(Proof of Concept)、無償提供授權、於共同研究契約中約定智財權僅歸屬合作廠商、延遲給付報酬予新創事業等;(2)新創事業與出資者間之契約:要求新創事業揭露營業秘密、負擔出資者外包業務予第三人之費用、購買不必要的商品或服務、提供片面優惠待遇、限制新創事業的交易對象等;(3)新創事業與其他競爭廠商間之關係:競爭廠商要求交易相對人不得向與其存在競爭關係之新創事業買入競爭性商品;競爭廠商針對特定新創事業設定較高的商品售價,而事實上拒絕與其進行交易等。同時,依據報告書,在與合作廠商或出資者進行交易、或訂定契約的過程中,約有17%的新創事業表示曾遭遇「無法接受的行為」(納得できない行為),且當中有約八成的新創事業妥協接受。其中,若為銷售額未滿5000萬日圓、且公司未配有法務人員的新創事業,遇到無法接受行為的事業家數為銷售額5000萬日圓以上、且公司有法務人員之新創事業的2.5倍。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 日本發布Startup交易習慣之現況調查報告最終版,統整新創事業實務上遭遇不公平競爭行為之態樣, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8607&no=64&tp=1 (最後瀏覽日:2025/07/05)
引註此篇文章
你可能還會想看
美國商務部產業安全局對半導體成熟節點晶片的使用進行評估調查

美國產業安全局(Bureau of Industry and Security,下稱BIS)於2024年1月18日,針對直接或間接支持美國國家安全和關鍵基礎設施,全面評估供應鏈中成熟節點半導體設備的使用情況。本次調查將根據《1950年國防生產法》(Defense Production Act of 1950)第705條進行,以評估在美國關鍵產業(如電信、汽車、醫療設備和國防工業基地)的供應鏈中使用由中國公司生產的成熟節點晶片的程度和影響力。 BIS同時提供常見問答予各界參考,主要包括如下內容: (1)本次評估調查為一次性的資訊蒐集;不排除未來也可能依指示再次進行類似的評估。 (2)本次評估將提供後續政策制定的參考,以加強半導體供應鏈,促進傳統晶片生產的公平競爭,並降低中國對美國帶來的國家安全風險。 (3)自1986年以來,BIS已就造船、戰略性材料、太空和航空、火箭推進、彈藥和半導體等廣泛項目進行過約60多項評估以及150多項調查。 (4)商務部可能會公開一份主要調查結果的摘要說明。 (5)本次評估並非根據《2021年國防授權法案》(National Defense Authorization Act for Fiscal Year 2021,即俗稱之《晶片法》)第9902節規定進行。個別對調查的答覆不會影響申請《晶片法》或其他政府資助的資格或考量。 (6)本次評估並非BIS對於高階運算晶片規範的一部分,而是著重成熟節點或傳統晶片的舊技術。

電力市場2.0--2015德國電力市場改革最新發展

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

歐盟執委會提出資料治理與資料政策

歐盟執委會提出資料治理與資料政策 資訊工業策進會科技法律研究所 2020年10月12日   歐盟執委會(European Commission,以下簡稱執委會)於2020年7月提出「資料治理與資料政策」(Data Governance and Data Policies at the European Commission)[1],旨在說明歐盟執委會將如何透過資料治理及相關政策,轉型為資料驅動型組織(data-driven organization),並提供一致的方向或原則,促進執委會下各政務總署(Directorate-General)及事務部門(Service Department)(以下簡稱相關部門機構)之資料共享。 壹、背景目的   「促成歐洲適應數位時代,並使執委會成為完全數位化、具敏捷性、靈活性與透明性的歐盟組織」是執委會現任主席Ursula von der Leyen所提出的2019年至2024年政策願景之一[2]。隨著數位化發展,透明(transparent)、循證式(evidence-based)的決策需運用人工智慧資料分析技術,「資料」是直接影響人工智慧運用於政策決定的關鍵要素。欲提升人工智慧運用結果被信賴的程度,首先必須有可查找(findable)、可近用(accessible)、可互通(interoperable)、安全(secure)且高品質(high-quality)的資料。歐盟機構內部資料、資訊與知識的共享與治理,有助於此願景之達成。   因此,執委會提出「資料治理與資料政策」,建立執委會統一的資料治理架構與政策原則,幫助執委會轄下相關部門機構共同遵循資料管理(data management)、資料近用、資料保護、智慧財產權、資訊安全等相關法律與監理要求。同時,執委會亦期能藉此優化資料建立(creation)、蒐集(collection)、取得(acquisition)、存取(access)、利用(use)、處理(processing)、共享(sharing)、保存(preservation)與刪除(deletion)等資料生命週期必經流程,改善資料品質,提升資料管理及共享之效率。 貳、內容摘要   「資料治理與資料政策」的適用範圍為執委會及其相關部門機構所擁有、利用或再利用的資料集,包括政策決定所使用的資料、行政資料與個人資料。在「資料治理與資料政策」的執行上,則導入「遵守或解釋」(comply-or-explain)原則,除非法律明示規定為選擇性適用,否則執委會轄下相關部門機構皆需遵守;倘未遵守,則需就無法遵守的原因提出解釋。以下分別就「資料治理」與「資料政策」兩大部分重點說明。 一、資料治理   主要目的在建構執委會統一的資料治理架構,釐清相關角色的責任與相互依賴關係。依角色與任務的不同,執委會將資料治理分為三層級,並由秘書總署集體治理團隊(Secretariat-General corporate governance team)支援三層級的執行工作。 (一)策略層級(strategic level)   由資訊管理指導委員會(Information Management Steering Board, IMSB),處理資料治理與資料政策相關議題,界定長期推動願景、提供政策方向、監督推動與執行之進程,並作出策略決定。 (二)管理階層(managerial level)   由資料議題相關的組織、委員會、團體所組成之資料協調小組(data coordination groups)、各地區資料聯絡窗口(local data correspondent)、執委會各相關部門機構下的資料治理委員會(data governance board),以及策略層級就各資料集所指定之資料擁有者(data owner),依策略層級所提出之願景與政策方向,在各處建立並執行資料政策、監督執行進度,並向策略層級報告執行進度及任何超出其決策權限之問題。 (三)運作階層(operational level)   由資料擁有者選出或指派資料管理員(data steward),並與資料利用者(data user)實際執行資料政策,必要時將相關議題提到管理層級解決。 二、資料政策   就資料管理(data management)、資料互通性與標準(data interoperability and standards)、資料品質(data quality)、資料保護與資訊安全(data protection and information security)等核心面向,建立上位原則。   其中關於「資料管理」部分,又依資料生命週期細分。例如在「資料集建立、蒐集或取得」方面採取一次性原則,故執委會轄下相關部門機構在建立、蒐集或取得資料之前,需探詢必要資料或資訊是否已存在,避免重複取得。主要需求資料集的部門機構,應協助讓其他執委會相關部門機構或歐盟機構也獲得使用該資料集之權利。又例如「資料集存取、使用與共享」方面,除非歐盟相關的執委會決定、指令或規則另有規定[3],否則以「需要共享」(need to share)或「預設共享」(share by default)為原則,並使用一致化的資料管理與視覺化工具或資料平台。   針對「資料互通性與標準」與「資料品質」兩部分,著重在執委會內部的共通一致性,包括資料格式、資料相關詞彙、資料品質的定義與量測等。而在「資料保護與資訊安全」方面,則強調「歐盟機關個人資料保護規則」[4]相關義務,以及歐盟資料保護監督機關(European Data Protection Supervisor, EDPS)所提相關指引之遵循。 參、簡析   觀察歐盟執委會的「資料治理與資料政策」,可知其資料治理架構與相關政策,是以形成一個資料共享再利用生態系為藍圖。除了強調資料一次性建立及資料預設共享等原則,更從組織管理角度,界定不同單位或角色的任務與責任,並凸顯資料治理管理組織的建構,對資料政策執行之重要性。   我國政府長期致力於數位國家之發展,在政府資料開放政策推動上已有不少成果,例如建立政府資料開放平台、訂定各級機關資料開放作業原則、統一資料開放格式等。為持續厚植數位國家的資料應用能量,建議未來可進一步完善政府資料治理構面,兼納「政府對民眾之資料開放」及「公務機關間之資料共享」等面向,借鏡歐盟執委會之作法,確立資料共享再利用之管理架構及原則,提升政府資料應用的效率與效能。 [1] EUROPEAN COMMISSION, Data Governance and Data Policies at the European Commission (2020), https://ec.europa.eu/info/sites/info/files/summary-data-governance-data-policies_en.pdf (last visited Oct. 5, 2020). [2] See Ursula von der Leyen, My Agenda for Europe: Political Guidelines for the Next European Commission 2019-2024 (2019), https://ec.europa.eu/commission/sites/beta-political/files/political-guidelines-next-commission_en.pdf (last visited Oct. 8, 2020). [3] 例如歐盟執委會決定Commission Decision 2011/833/EU、歐盟規則Regulation (EC) No 1049/2001及歐盟指令Directive (EU) 2019/1024等,有關近用歐盟資料之例外規定。 [4] Regulation on the Protection of Natural Persons with regard to the Processing of Personal Data by the Union Institutions, Bodies, Offices and Agencies and On the Free Movement of Such Data, and Repealing Regulation (EC) No 45/2001 and Decision No 1247/2002/EC, Council Regulation 2018/1725, 2018 O.J. (L295) 39.

TOP