世界智慧財產權組織發布2020世界智慧財產權指標報告,世界專利申請數於近十年首度下降

  世界智慧財產權組織(World Intellectual Property Organization, WIPO)於2020年12月7日發布2020年世界智慧財產權指標報告(World Intellectual Property Indicators 2020, WIPI 2020)。WIPI年度報告蒐研分析150個國家及地區的智財統計資料,作為商務人士、投資者、學界和創業家參考指標。該份報告顯示,全球的商標與設計專利的申請活動成長約5.9%和1.3%,然而受到了中國專利申請量下降的影響,2019年全球專利申請下降3%,這也是近10年來首度下降;若扣除中國不計,2019年全球專利申請數量成長2.3%。

  該份報告除了彙整國際整體數據以外,依專利、商標、工業設計、植物品種、地理標示等不同主題分別統計。在專利部分,中國大陸國家知識產權局、美國專利商標局分別為收到專利申請提交數量之前兩名;接續為日本、韓國和歐盟。這五大智財當局合計占全球總數之84.7%。其中韓國、歐盟和美國申請數量均有成長,中國大陸申請數量下降達9.2%,亦為中國大陸24年來首度下降,報告說明其因為中國大陸改善申請案結構和申請品質之故,致中國大陸國內公民之申請量減少10.8%,而國外申請量仍保持成長。

  另外在商標部分,受理申請數量最多之前六個國家分別為中國、美國、日本和伊朗和歐盟;而2018年到2019年間受理申請增加幅度最多者為巴西、越南、伊朗、俄國和土耳其。據估計,2019年全球有效商標註冊量為5820萬,較2018年成長15.2%,且中國就囊括約2520萬,其次為美國的280萬和印度的200萬。針對中國大陸商標和專利申請數量為世界之冠,引起全球關注,美國專利商標局(USPTO)亦在2021年1月13日發布研究報告,指出中國大陸商標和專利申請案數量可能源自政府補貼或其他非市場因素的影響;其中又以政府補貼為刺激商標與專利申請案件數增長的最大可能原因。而這些非市場因素的商標及專利申請案件可能誤導世界對中國大陸創新能力的評估。

  在工業設計(Industrial designs)方面,2019年全球提交136萬件設計專利申請,其中104萬件為工業設計;而中國大陸的工業設計申請量就囊括約71萬件。若以類型區分,和家具有關的設計專利比例為全球9.4%,其次是服裝(8.1%)以及包裝和容器(7.3%)。植物品種(Plant varieties)部分,中國大陸智財當局於2019年收到了7834種植物新品種申請,較2018年成長36%,同時也占全球植物品種申請的三分之一以上。地理標示(Geographical indications)部分,截至2019年和葡萄酒及烈酒有關的地理標示約為全球地理標示的56.6%,其次是農產品/食品(34.2%)和手工藝品(3.5%)。

本文為「經濟部產業技術司科技專案成果」

相關連結
相關附件
你可能會想參加
※ 世界智慧財產權組織發布2020世界智慧財產權指標報告,世界專利申請數於近十年首度下降, 資訊工業策進會科技法律研究所, https://stli.iii.org.tw/article-detail.aspx?d=8613&no=55&tp=1 (最後瀏覽日:2026/01/28)
引註此篇文章
你可能還會想看
德國聯邦法院裁判臉書之Find Friends功能違法

  德國消費者組織聯盟(Federation of German Consumer Organisations , 以下簡稱VZBV)針對臉書(Facebook)的”find friends”功能向該公司發出警告信。臉書的”Find friends”功能為使用者先在該社群網站上輸入自己的email後,再選擇其與朋友的聯繫管道,如yahoo信箱、skype等。臉書將儲存使用者所上傳的聯絡人資訊,並用以協助使用者尋找朋友,或者透過居住地、學校、工作場所等搜尋要件,協助使用者找尋好友。然而,在臉書未有任何修正的情況下,VZBV向柏林地方法院控告臉書並獲得勝訴,之後臉書向上訴法院提起上訴,但於2014年01月24日遭到駁回。2016年01月14日,德國聯邦法院維持下級審法院判決,裁判臉書的” Find friends”功能牴觸德國隱私權保護與消費者保護之法律。 (一)德國聯邦資料保護法(Bundesdatenschutzgesetz,BDSG)   法院認為該項功能違反德國聯邦資料保護法,蓋因臉書未能在收集或利用使用者以及非使用者的資料前,事先取得其同意。此外,臉書的契約條款中亦未提供使用者適當程度的通知,讓使用者知道他們的資料將會被如何使用。 (二)德國不正競爭防制法(Gesetz gegen den unlauteren Wettbewerb, UWG)   法院認為,臉書在利用使用者資料並且寄發廣告郵件給非臉書會員時誤導使用者,讓使用者以為這個功能是受到限制的,亦即使用者誤認僅有其臉書上的朋友才在搜尋範圍之內。然而,臉書實際上更寄發邀請廣告郵件給其他非臉書的使用者。由於德國不正競爭防制法第五條第一項規定,採取引人錯誤的交易行為,其行為構成不正當。此外,該法第七條亦規定,具訊息之廣告,其掩飾或隱匿委任傳送此訊息之發送人的身分, 即被視為不合理之煩擾。又以不合理之方式來煩擾市場參與者之交易行為,不得為之。因此,其被認定構成德國不正競爭防制法第五條”引人錯誤的交易行為”以及第七條"不合理之煩擾"。   本案從2010年開始直至聯邦法院裁判結果出爐前,”find friends”功能已有修正,然而VZBV認為這些修正並不足夠。在2016年的這份裁判出爐後,facebook將如何修正及調整商業模式,以符合德國法律之規定值得持續關注。此外,許多社群網站如LinkedIn亦有類似功能,該裁判結果對於這些網站的商業運作,將造成如何的影響亦應持續追蹤。

美國國家創新與創業諮詢委員會發布透過創業提高競爭力美國創新策略報告, 敦促政府消除創業活動障礙,促進新創公司發展

美國國家創新與創業諮詢委員會(National Advisory Council on Innovation and Entrepreneurship, NACIE)於2024年2月8日發布「透過創業提高競爭力:美國創新策略」(Competitiveness Through Entrepreneurship: A Strategy For U.S. Innovation)報告,其確定改善與協助美國創業精神之三大關鍵領域,並提出十項建議,敦促政府消除創業活動障礙,增加新創公司獲得人才、資金之機會。 NACIE由企業家、創新者、投資人、學者與經濟發展領導者組成。由商務部長責成其確定如何使美國繼續成為改變典範之創新來源、以及將創新推向市場之泉源。NACIE於此報告中所確認之三大關鍵領域與十項建議之內涵簡述如下: (1)關鍵領域1:發展未來產業(Growing the Industries of the Future) 美國雖於能源、自動化、人工智慧、量子科學與生物科技等創新領域取得商業上之成功,但對於產業創新仍存有四大威脅,包括國家機關間之協調、研發投資之持續減少、大學研發產品商業化受阻與境外製造之風險。 建議1: 成立國家創新委員會(National Innovation Council),由科學技術政策辦公室主任(Director of the Office of Science & Technology Policy)擔任主席,成員包括相關內閣秘書、國家科學基金會(NSF)主任、美國專利商標局(USPTO)局長與美國首席技術長(Chief Technology Officer, CTO),倡導全國創新與創業並協調相關聯邦政府活動。 建議2: 恢復與擴大國家投資,使創新登月計畫成為可能—大幅增加聯邦對關鍵技術之研發投資,使美國在未來成長產業中發揮領導作用。 建議3: 啟動國家創新加速器網路(National Innovation Accelerator Network, NIAN)—一個由加速器、輔導、投資計畫與創業支持組織組成之虛擬“網路中之網路”(“network of networks”),旨在大規模增強社會各方面之包容性創業能力。 建議4: 為聯邦資助之研究與開發提供智慧財產權激勵措施;制定政策與激勵措施,促進聯邦政府資助之創新廣泛傳播與商業化;並促進將聯邦資助創新進行國內製造。 建議5: 積極與創新者、企業家與資助者合作,確保其擁有足夠之智慧財產權與網路安全教育與資源來保護其之想法與業務,並接受培訓以能夠識別與防止外國公司或國家潛在之智慧財產權盜竊。 (2)關鍵領域2:獲取資本(Accessing Capital) 美國前七大上市公司全部皆由創投所支持,於1990至2020年間,相較於私部門之雇用率上升40%,同一時期由創投支持之公司雇用率成長達960%;美國創投規模亦居於全球之冠,甚至某些城市之創投規模已超過其他國家,如2021年紐約之創投規模即相當於印度全國之規模。惟美國創投之問題在於投資機會未能平等,如女性、有色人種、非都會區較難獲得創投投資。 建議6: 透過制定新聯邦計畫,擴大企業家之成長資金管道,以支持各地更多企業家,特別是通常未受足夠服務之企業家。 建議7: 透過擴大直接資助與基於激勵(incentive-based)之聯邦計畫,增加資金並為新興基金經理提供機會,以便於全國更多處皆能有更多具有各種人口背景與專業之投資人。 建議8: 向投資於研發、種子輪或A 輪融資新創公司、女性與少數族群擁有之新創公司、以及保護與授權智慧財產權之公司與個人提供年度稅收抵免與激勵措施。 (3)關鍵領域3:培養創業人才(Developing Entrepreneurial Talent) 人才對於創業生態系之完整建構至為重要,美國一半以上之10億美元公司由移民創辦,三分之二之獨角獸公司由移民創辦或共同創辦,這些公司之創辦人中有25%是國際學生。 建議9: 透過提供導師、支持服務資金以及幫助吸引與培養關鍵人才,全面支持新高潛力企業家,旨在增加美國新創公司之數量與影響力。 建議10: 有系統地提供支持創業之工具與資源,打破任何人、任何地方之障礙,為新創業企業做出貢獻,以便美國未來能更快地創新。

澳洲證券投資委員會與美國商品期貨交易委員會簽訂雙邊合作協議

  2018年10月4日,澳洲證券投資委員會(Australian Securities and Investments Commission,簡稱:ASIC)與美國商品期貨交易委員會(US Commodity Futures Trading Commission,簡稱:CFTC)簽訂「金融技術創新合作雙邊協議」(Cooperation Arrangement on Financial Technology Innovation’ bilateral agreement,簡稱:協議),該協議內容主要針對未來金融科技(fintech)以及監理科技(regtech)之合作以及相關資訊作交換。   協議內容主要為加強雙方瞭解、識別市場發展趨勢,進而促進金融科技創新,對於運用監理科技之金融產業採取鼓勵的態度。   具體協議內容及相關合作計畫為以下條款: 1. 建立正式合作途徑,其中包含資訊分享,ASIC創新中心與LabCFTC之間的溝通; 2. 協助轉介有興趣於另一管轄權,設立企業之金融科技公司; 3. 促進監管機構定期舉行相關監管會議,討論目前時下發展趨勢,藉以相互學習; 4. 針對非公開資訊及機密資訊,給予監管機構以共享方式流通資訊。   儘管,澳洲與美國已簽訂此協議,惟須注意的地方在於,此協議本質上不具備法律約束力,對監管機構也未加註責任,並強加特定義務,以及未取代任何國內法的法律義務。   雖然,此協議不具任何法律約束力,但美國以及澳洲之金融科技創新產業間已形成一定之默契,以及交叉合作。此種互利合作,使兩國金融創新企業在雙方管轄權下,並且降低跨境成本及加深跨境無障礙性,為兩國監管機構提供最佳執行方式,以及進一步資料之蒐集。

德國聯邦資訊技術,電信和新媒體協會針對AI及自動決策技術利用提出建議指南

  德國聯邦資訊技術,電信和新媒體協會於2018年2月6日在更安全的網路研討會中針對利用人工智慧及自動決策技術利用提出建議指南(Empfehlungen für den verantwortlichen Einsatz von KI und automatisierten Entscheidungen),旨在提升企業數位化與社會責任,並提升消費者權益保護。 本份指南提出六項建議: 促進企業內部及外部訂定相關準則 例如規定公司在利用演算法和AI時,必須將影響評估列入開發流程,並列為公司應遵守的道德倫理守則,以確保開發的產品或服務符合公平及道德。 提升透明度 使用者如有興趣了解演算法及其含義,企業應協助調查並了解使用者想獲知的訊息,並透過相關訊息管道提升產品及服務透明度。因此,企業應努力使演算法及其操作和含義能夠被使用者理解。此亦涉及即將實施的歐盟一般資料保護規則中的透明度義務。在機器學習或深度學習情況下,可能會增加理解性和可追溯性難度,但有助於分析流程並使其更接近人類理解的方法在科學和商業實踐中,應特別關注並進一步討論。另外,透過教育及使用說明協助及控制功能,教導消費者係建立雙方信任的重要手段。企業應在第一線中說明產品或服務中使用的手段(演算法,機器學習,AI)。除了解釋使用那些技術來改進產品和服務外,應一併解釋如何從技術控制過程中獲得相關知識以及提供那些後援支持。另外,例如透過幫助頁面,儀表板或部落格,解釋發生什麼以及如何做出某些影響深遠的自動化決策,使用戶更了解有關使用自動決策相關訊息。因此建議企業採取強制有效以建立信任的措施,使用戶理解是否及如何使用相關演算法,此可能包括使用自動化決策,使用特定資料組和使用技術的目的,亦即使用戶對演算法,機器學習或AI支持的決策有基本的了解。 為全體利益使用相關技術 人工智慧等新技術之重要性不應被低估,目前在生活和工業等眾多領域皆有廣泛應用。對於個人和集體而言,將可帶來巨大的利益,因此應該充分利用。例如,人工智慧可降低語言障礙,幫助行動不便的人可更加獨立自主生活,改善醫療診斷,提升能源供應效率,甚至是交通規劃和搜索停車位,都只是人工智慧偉大且已被使用的案例。為促進技術發展,應公平地利用其優勢並預留商業應用模式的空間,同時充分解決涉及的具體風險。產業特定的解決方案十分重要,但應兼顧受影響者的利益,並與廣大公眾利益找出妥協平衡點,且應排除不適當的歧視。建議在使用決策支持技術時,應事先檢查相關後果並與其利益比較。例如,可以在資料保護影響評估的框架進行。作為道德準則的一部分,必須確保演算法盡可能量準確地預測結果。 開發安全的資料基礎 資料係人工智慧支援決策的基礎。與人為決策者相同,資料不完整或錯誤,將導致做出錯誤的決定。因此決策系統的可靠性仍取決資料的準確性。但資料質量和資料來源始終不能追溯到源頭,如果可能的話,只有匯總或非個人資料可用於分析或分類用戶群組。因此,確切細節不可被使用或揭露。因此建議企業應考慮要使用的資料、資料的類別和在使用AI系統前仔細檢查資料使用情況,特別是在自我學習系統中資料引入的標準,並根據錯誤來源進行檢查,且儘可能全面記錄,針對個人資料部分更應謹慎處理。 解決機器偏差問題 應重視並解決所謂機器偏差和演算法選擇和模型建立領域的相關問題。解釋演算法,機器學習或AI在基層資料選擇和資料庫時所產生決策偏見相當重要,在開發預期用途的演算法時必須納入考量,對員工應針對道德影響進行培訓,並使用代表性紀錄來創建可以識別和最小化偏差的方法。企業並應該提高員工的敏感度並培訓如何解決並減少機器偏見問題,並特別注意資料饋送,以及開發用於檢測模式的內、外部測試流程。 適合個別領域的具體措施和文件 在特別需要負責的決策過程,例如在車輛的自動控制或醫療診斷中,應設計成由責任主體保留最終的決策權力,直到AI的控制品質已達到或高於所有參與者水平。對類人工智慧的信任,並非透過對方法的無條件追踪來實現,而是經過仔細測試,學習和記錄來實現

TOP