日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。
前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。
日本經濟產業省「促進再生能源關連制度改革小委員會(再生可能エネルギー導入促進関連制度改革小委員会)」於2016年2月5日公布了報告書,該報告書集結了自2015年9月以來,共計13次的討論整理,未來FIT制度改革方向,將以此為根基。 提出該報告的目的在於,達成最加能源構成方案(エネルギーミックス)之目標,於2030年導入22-24%之再生能源,冀望在最大限度導入再生能源,並與抑制國民負擔之間調合並存。 該報告提出五大修正制度方針,分別簡述如下: (一)針對未運行案件對應修正認證制度 (1) 進一步加強撤銷認證制度之報告徵收及聽證程序。 (2) 創設新認證制度,應確認該發電事業的實施可能性後,才得認定為FIT。 (二)促進長期安定發電的配套措施 (1) 事業者應做適當的檢查及維修、發電量定期報告,制定廢棄及回收等應遵守事項。若有違反情事,主管機關得發出改善命令或是取消認定資格。 (2) 確認並遵守所涉及之土地使用條例、公告認定資訊、提供地方政府建構計畫內容。 (三)導入成本效率 (1) 設定中長期之「收購價格」目標。 (2) 以Top Runner等方式決定具備「成本效率」之收購價格,亦即以最佳方式選擇。 (3) 賦課金減免制度為一個可持續的機制,同時透過活用賦課金以確保基金,並確認對象事業的節能方案及對國際競爭力的影響等(檢討減免率)。 (四)擴大導入開發週期長(リードタイムの長い)之電力 (1) 開發週期較長之電力,預先於數年前決定認證案件之收購價格。 (2) 進行環評期間減半(通常為3~4年)等必要規制改革。 (3) 於FIT認證前,得申請接續系統。 (4) 針對不同電力的挑戰檢討對應的支援方法 (五)擴大導入電力系統改革之優勢 (1) 基於「廣域系統整備計畫」,計畫性地推動整備廣域系統。 (2) 對應區域系統之限制,公告系統資訊以及建設費用之單價。此外,繼續活用投標邀請規則(入札募集ルール),共同負擔系統升級費用。 (3) FIT收購義務人由零售事業者轉換為輸配電事業者,並促進全國區域間電力調配(広域融通)之順暢性。收購後之電力,得經由交易市場外直接輸送予零售事業者。 (4) 整備再生能源事業者間公平之輸出控制規則(公平な出力制御ルール)。
日本發布資料素養指南之資料引領判斷篇,旨在呼籲企業透過資料分析結果改善並優化企業經營日本獨立行政法人情報處理推進機構於2025年7月發布《資料素養指南(下稱《指南》)》,指南分為三大章,第一章為整體資料環境之變化;第二章為資料治理;第三章為資料、數位技術活用案例與工具利用。指南第二章中的資料引領判斷篇,主要為呼籲企業透過資料分析結果改善企業經營。 《指南》資料引領判斷篇指出,在進行資料驅動的判斷流程時,需留意三點事項,分述如下: (一) 提出假說、驗證並進行決策 首先盤點利害關係人,蒐集各自的需求與課題,考量可以適用的技術與服務,並以此為基礎提出與事業相關的假說。其次,盤點必要資料並確認其利用可能性,同時針對所缺乏的資料進行取得可能性之評估。下一步,以所取得的資料為基礎進行假說與資料分析結果之驗證。而後,將假說與資料分析結果的驗證成果提供給利害關係人,並以利害關係人的意見為基礎,進行追加資料的取得並同時修正假說內容。最後,基於資料分析結果進行決策。 (二) 判斷決策所必要之資料的信賴性 企業在盤點必要之資料以進行分析並據此進行決策時,由於資料沒有達到特定數量無法用於分析、資料蒐集需花費時間成本,且判斷時點有時亦有其時效性,因此,在確保必要之資料時,會先檢視企業內部所持有之資料,而後確認政府機關的公開資料,如仍缺乏必要之資料,則會確認從資料市場取得之可能性等。在確保必要之資料後,則會判斷決策所必要之資料的信賴性,其主要分為兩點,一為針對資料本身之信賴性,包含資料是否有偏頗、對於資料產出者的信賴性以及資料取得日期、地區等;一為資料傳輸、編輯的信賴性,包含對於資料仲介者的信賴性、資料編輯程式以及資料整合方針。在無法完全確保資料的信賴性時,則會透過相關聯的資料進行資料正確性的檢驗。 (三) 服務導入與監視 資料分析並不僅侷限於現在資料的分析,亦會涵蓋未來資料的預測。舉例而言,自動駕駛資料不僅會分析車輛狀況以及周圍狀況,亦會預測並自動判斷是否需要剎車。透過資料分析結果導入服務後,亦應透過監視檢視決策成效,方法包含滿意度調查、平均使用時間調查等,並針對調查結果進行改善。 我國企業如欲將其所持有之資料用於分析並依照分析結果進行企業經營決策,除可參考日本所發布之《指南》資料引領判斷篇建立內含PDCA四面向之管理制度以外,亦可參考資訊工業策進會科技法律研究所創意智財中心所發布之《重要數位資料治理暨管理制度規範》,針對自身所持有之資料建立包含PDCA四面向之管理制度。 本文為資策會科法所創智中心完成之著作,非經同意或授權,不得為轉載、公開播送、公開傳輸、改作或重製等利用行為。 本文同步刊登於TIPS網站(https://www.tips.org.tw)
概念驗證中心(Proof of Concept Center, PoCC)概念驗證中心(Proof of Concept Center, PoCC)源自美國研究型大學各校為加速大學科研成果商業化,於內部建立的專業型機構。全美第一所PoCC是2001年設立於加州大學聖地牙哥分校的「里比西中心」(the William J. von Liebig)。 為了因應美國大學科研成果商業化過程中所遇到的阻礙,例如:資金與資源缺乏導致研發人員動力不足、研發人員對於市場需求資訊不對等、技術開發提升緩慢以及政府激勵政策不足等問題。PoCC以解決大學與企業之間存在的各種差異與衝突為目標,並透過下列手段強化科技成果商業化動力,提升商業化績效:1、通過種子基金資助,為無法獲得資金支持的早期研究提供經費挹注;2、為大學科研成果商業化提供市場顧問與技術開發諮詢,以及智慧財產權保護等諮商;3、創業人才教育及培訓,促進創業文化並進行創業教育,以增強大學與產業協同創新能力。
馬來西亞與印尼反駁對棕櫚油生產破壞環境之指控馬來西亞農產業與產品部長(the Minister of Plantation Industries and Commodities)與印尼農業部長(the Minister of Agriculture)在今(2007)年5月25日共同表示,將採取行動來反制歐洲境內對其所生產棕櫚油有破壞生態環境之虞的論述。在全球暖化的議題發燒且歐盟設定再生能源使用目標的政策導引下,以棕櫚油為原料製造生質柴油的市場需求預期會大幅增加,這兩個全球最大棕櫚油產國於是認為許多對其棕櫚油生產不符永續發展要求的「不實」指控會影響其國內相關產業之發展。兩國政府與產業代表將以舉辦座談會、拜會歐洲各國官員與非政府組織的方式來提供「正確」資訊,同時兩國亦設定提升兩國棕櫚油年產量至1200萬公噸的目標。 然而世界自然基金會德國分會(WWF Germany)所發表的報告指出,棕櫚油之需求增加恐會導致棕櫚油產國的熱帶雨林遭砍伐來作為棕櫚樹的耕地。地球之友(Friends of the Earth)表示,目前已有90%的紅毛猩猩棲息地被破壞,此趨勢繼續下去野生紅毛猩猩將在12年內滅絕;綠色和平組織(Greenpeace)則指出印尼在2000至2005年間以全球最快的速率在砍伐森林,每小時有相當300個足球場面積的林地被破壞。此外,棕櫚油永續生產圓桌會議(the Roundtable on Sustainable Palm Oil,RSPO)亦開始研議棕櫚油生產的最低生態標準,希望能確保其生產符合永續發展之要求。