日本農林水產省(以下簡稱農水省)從2021年起於補助計畫要點中規定,農業關係人利用農水省補助金導入智慧農機、無人機、農業機器人、IoT機器等所產生資料,且為系統服務業者取得、保管的情況下,須符合2020年農業領域AI資料契約指引要求之相關程序(下稱GL合規)。系統服務業者可依據農水省網站所提供的GL合規CHECKLIST,自行向律師、專利師等諮詢,評估其與農業資料提供者間契約是否GL合規。農水省亦於2020年年底召開兩場相關說明會,條列出須GL合規之補助計畫清單,且相關計畫規定預計於2021年生效(2021年1月6日至2月10日公開招募之智慧農業實證計畫即已有相關規定)。
前述規定係源自於2020年7月17日日本閣議通過最新版「規制改革實施計畫」,其中與「農業資料利用」相關實施項目為:利用農水省補助金導入智慧農業機械時所締結之契約,應符合2020年農業領域AI資料契約指引之核心精神,保障農民可使用其提供給系統服務業者所保管之數據資料。日本政府為促進農業關係人提供資料,於2020年制定農業領域AI資料契約指引,做為農業資料提供者與智農機具系統服務業者訂立契約時之參考。為更進一步促使系統服務業者獲得農業資料提供者的信賴,透過規制改革實施計畫,將該農業資料契約指針推升成為補助計畫要點,可作為我國農業領域推動資料提供、保護、或流通運用機制之借鏡。
美國國會於1980年通過了拜杜法案(Bayh-Dole Act),正式名稱為1980年大學與小型企業專利程序法(University and Small Business Patent Procedures Act of 1980, 35 U.S.C. 200 et seq.)。經濟學人(The Economis)曾對美國拜杜法評價為「可能是過去半世紀在美國所成立之最具創見之法律」,其目的是讓大學、中小企業等與聯邦機構締約,執行聯邦政府資助的研發計畫後仍能保有其研究成果之專利,亦即將此研究成果的專利申請權歸屬於受資助之大學或中小企業,而非聯邦政府。 拜杜法案(Bayh-Dole Act) 35 U.S.C. § 201(c)對立約人(contractors)定義為,任何簽署資助協議的自然人、小型企業、或非營利機構。而權利歸屬部分,規定於35 U.S.C. § 202,非營利機構、中小企業等與聯邦機構簽訂資助契約之承攬人可以選擇是否擁有受資助發明(elect to retain title to any subject invention)之權利。再者,立約人負責專利管理事務之人員,應於知悉受資助發明的合理期間內,向聯邦機構揭露該發明,若未於合理期間內揭露,則該發明歸屬於聯邦機構。並且,立約人應於揭露發明後2年內,以書面行使其選擇權,逾期則該發明權利歸屬於聯邦機構。另 35 USC § 203有介入權規定,聯邦機構認為有必要時,得要求立約人、其受讓人或其專屬被授權人將發明專屬、部分專屬(partially exclusive)或非專屬授權予申請人,聯邦機構得自行為之。
英國發布人工智慧網路資安實務守則英國政府於2025年1月31日發布「人工智慧網路資安實務守則」(Code of Practice for the Cyber Security of AI,以下簡稱「實務守則」),目的是提供人工智慧(AI)系統的網路資安指引。該實務守則為英國參考國際上主要標準、規範後所訂定之自願性指引,以期降低人工智慧所面臨的網路資安風險,並促使人工智慧系統開發者與供應商落實基本的資安措施,以確保人工智慧系統的安性和可靠性。 由於人工智慧系統在功能與運作模式上與傳統網路架構及軟體有明顯的不同,因此產生新的資安風險,主要包含以下: 1. 資料投毒(Data Poisoning):在AI系統的訓練資料中蓄意加入有害或錯誤的資料,影響模型訓練結果,導致人工智慧系統產出錯誤推論或決策。 2. 模型混淆(Model Obfuscation):攻擊者有意識地隱藏或掩飾AI模型的內部運作特徵與行為,以增加系統漏洞、引發混亂或防礙資安管理,可能導致AI系統的安全性與穩定性受損。 3. 輸入間接指令(Indirect Prompt Injection):藉由輸入經精心設計的指令,使人工智慧系統的產出未預期、錯誤或是有害的結果。 為了提升實務守則可操作性,實務守則涵蓋了人工智慧生命週期的各階段,並針對相關角色提出指導。角色界定如下: 1. 人工智慧系統開發者(Developers):負責設計和建立人工智慧系統的個人或組織。 2. 人工智慧系統供應鏈(Supply chain):涵蓋人工智慧系統開發、部署、營運過程中的的所有相關個人和組織。 實務守則希望上述角色能夠參考以下資安原則,以確保人工智慧系統的安全性與可靠性: 1. 風險評估(Risk Assessment):識別、分析和減輕人工智慧系統安全性或功能的潛在威脅的過程。 2. 資料管理(Data management):確保AI系統整個資料生命週期中的資料安全及有效利用,並採取完善管理措施。 3. 模型安全(Model Security):在模型訓練、部署和使用階段,均應符合當時的技術安全標準。 4. 供應鏈安全(Supply chain security):確保AI系統供應鏈中所有利益相關方落實適當的安全措施。 「人工智慧網路資安實務守則」藉由清晰且全面的指導方針,期望各角色能有效落實AI系統安全管控,促進人工智慧技術在網路環境中的安全性與穩健發展。
韓國最高法院宣告撤銷製藥公司含有「LEGO」名稱的註冊商標韓國最高法院2023年12月8日宣告著名積木玩具樂高公司(LEGO Juris A/S)提起撤銷註冊商標「LEGOCHEMPHARMA」的上訴審判結果,確認韓國製藥商樂高生技有限公司(下稱LegoChem Bio)的註冊商標無效,因該註冊商標包含LEGO字樣,存有減損樂高公司「LEGO」商標識別性之虞,構成侵害商標權。 科斯達克上市公司LegoChem Bio於2015年11月申請「LEGOCHEMPHARMA」商標註冊,用以提供藥物開發服務,隨後樂高公司提出異議,聲稱該商標與其「LEGO」商標近似,該商標因此被駁回。據此,LegoChem Bio向智慧財產權審判及上訴委員會(IPTAB)提出上訴,並於2018年9月取得商標註冊。其後,樂高公司於2020年3月向智財法院提起訴訟,主張商標權受到侵害,請求撤銷「LEGOCHEMPHARMA」商標註冊,法院判決該註冊無效,LegoChem Bio因此向最高法院提起上訴。 首先,最高法院認為「LEGOCHEMPHARMA」(下稱系爭商標)的關鍵識別部分為「LEGO」,而「CHEM」和「PHARMA」僅是化學和製藥領域的名稱,沒有特殊的識別性。其次,依韓國《商標法》規定,第34條第1項第11款規定「可能與消費者高度認識的他人商品或服務造成混淆誤認,或損害其識別性或聲譽之虞的商標」不得註冊商標。最高法院認為系爭商標與樂高公司的高知名度和高識別性商標「LEGO」非常近似,被告LegoChem Bio申請註冊系爭商標之目的可能是為引起與先使用商標「LEGO」之聯想。因此判決系爭商標註冊無效,且應視為有損害著名商標識別性之虞。 本案攻防戰可看出商標取得、保護對於品牌之生存發展具有重要影響,有關品牌發展各階段應留意的風險與建議作法,企業可參考資策會科法所創意智財中心出版的商標專書「TOP品牌商標管理術!新創業到老字號都適用」,可藉由該書收錄的經典國內外品牌商標管理方式與時事案例,跟上品牌商標管理趨勢,其中的品牌商標管理工具,亦得直接應用於實務工作,輔助建置品牌商標管理機制,保護品牌獨特性、穩固品牌競爭力,為品牌經營帶來加乘效益。 本文同步刊登於TIPS網(https://www.tips.org.tw)
日本正式敲定今年版智慧財產權推動計畫日本為了提高產業競爭力,於 2002 年提出智財戰略計畫,並於內閣中設戰略本部,由首相小泉純一郎領導,每年並仔細擬定當年度的智慧財產權推動計畫。在今年剛定案的「二零零六年智慧財產權推動計畫」中,以開發或利用大學的智慧財產及加強與產業界的合作並提出對付仿冒品等的對策為重點。 根據「二零零六年智慧財產權推動計畫」,未來將加強整合大學內部的大學智慧財產本部與民間的技術移轉機關( TLO ),以便集中運用人才、研究成果。計畫也將建立一套可簡便利用專利或論文的資料庫系統,預期明年四月起可供利用。 日本的大學院校去年在國內取得專利權的有三百七十九件,大學將專利技術移轉至民間組織件數在二零零四年度有八百四十九件,藉由技術轉移所得收入為三十三億日圓,雖然這些表現相較於以往年度均有所成長,但日本不論在專利件數或收益上,都與美國相差甚遠,日本政府為了加強國際競爭力,認為有必要加強產、學界的合作,故「二零零六年智慧財產權推動計畫」也規劃,大學院校若有意到海外申請專利權,政府將補助申請費;此外,原本只限定優惠大學正副教授的專利申請費減免措施,也將及於研究所的學生等,以期促進大學內部研發。