日本經濟產業省、公平交易委員會及特許廳於2020年12月23日發布「Startup與廠商合作之相關指針」(スタートアップとの事業連携に関する指針)草案,並自同日起至2021年1月25日止向外徵求公眾意見。近年,日本國內一方面看重新創事業與大型企業合作所帶來的優勢;另一方面,在此種合作關係下,雙方的契約關係亦浮現如名為共同研究、卻由大型企業方獨占專利權等問題。基此,配合2020年4月未來投資會議的決議要求,統整新創事業與大型企業間不對等契約關係的問題與提出改善建議,並參考同年11月公平交易委員會所發布的「Startup交易習慣之現況調查報告最終版」(スタートアップの取引慣行に関する実態調査について最終報告),擬定本指針草案。
本指針主要著眼於新創事業與企業間的保密協議(Non-disclosure agreement, NDA)、概念驗證(Proof of Concept, PoC)契約、共同研究契約與授權(license)契約等四種契約類型。除了統整包含訂約階段在內的各種問題實例、以及日本獨占禁止法(私的独占の禁止及び公正取引の確保に関する法律)對此的適用現況外,亦提出了相應的改善與解決方案。舉例而言,指針草案指出,新創事業可能會被合作廠商要求對其公開營業秘密,卻未能簽訂保密協議。對此,合作廠商即可能構成獨占禁止法上濫用其優勢地位之行為。會造成此狀況發生的實務情境,可能為合作廠商承諾事後會簽署保密協議,但要求新創事業先行揭露其程式的原始碼等營業秘密等。而原因則主要包含新創事業缺乏足夠法律素養(literacy)、以及有關開放式創新的相關知識不足等。基此,指針提出改善方案,例如,締約前新創事業即先行區分出可直接向契約他方揭露的營業秘密、得透過締結NDA約定揭露之營業秘密、以及不得揭露之營業秘密等;締結NDA時,應盡可能具體約定營業秘密的使用目的、對象及範圍,並且考量到通常難以舉證廠商違反保密協議,因此不建議揭露攸關新創事業核心能力(core competence)的營業秘密。
本文為「經濟部產業技術司科技專案成果」
2011年5月英國電信主管機關Ofcom(Office of communications)對英國境內寬頻網路速率現況進行調查,寬頻網路平均下載速度從去年11月的6.2Mbits/s增為6.8Mbits/s,且有近半(47%)的使用者可享受到超過10Mbit/s的速度。 但廣告速度與真實速度間的差距擴大,今年5月業者平均廣告速度為15Mbit/s,,較真實速度6.8Mbits/s差距為8.2Mbit/s,而2010年11月平均廣告速度13.8Mbit/s真實速度6.2Mbit/s,差距為7.6Mbit/s。上述的差距主要發生於ADSL網路,英國有近75%的使用者仍用ADSL,此種傳輸方式將受到距離、纜線品質的影響。因此大多數業者所宣稱的20Mbit/s下載速度,僅能達到6.6 Mbit/s。有超過1/3的使用者速度為4 Mbit/s或更低。 F英國今年7月正式實施之寬頻速度自律規則(Voluntary Code of Practice on Broadband Speeds),為業者自願加入。除提供消費者「典型的速度範圍」(Typical Speed Range, TSR)資訊外,若消費者可使用速度小於業者宣稱之速度範圍,且業者無法解決問題時,在3個月內使用者可更換其他業者而無須罰款。目前已有BT、O2、Virgin Media等17家ISP業者加入自律規則中。
用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限用ChatGPT找法院判決?從Roberto Mata v. Avianca, Inc.案淺析生成式AI之侷限 資訊工業策進會科技法律研究所 2023年09月08日 生成式AI是透過研究過去資料,以創造新內容和想法的AI技術,其應用領域包括文字、圖像及影音。以ChatGPT為例,OpenAI自2022年11月30日發布ChatGPT後,短短二個月內,全球月均用戶數即達到1億人,無疑成為民眾日常生活中最容易近用的AI科技。 惟,生成式AI大量使用後,其中的問題也逐漸浮現。例如,ChatGPT提供的回答僅是從所學習的資料中統整歸納,無法保證資料的正確性。Roberto Mata v. Avianca, Inc.案即是因律師利用ChatGPT撰寫訴狀,卻未重新審視其所提供判決之正確性,以致後續引發訴狀中所描述的判決不存在爭議。 壹、事件摘要 Roberto Mata v. Avianca, Inc.案[1]中,原告Roberto Mata於2019年8月搭乘哥倫比亞航空從薩爾瓦多飛往紐約,飛行過程中膝蓋遭空服員的推車撞傷,並於2022年2月向法院提起訴訟,要求哥倫比亞航空為空服員的疏失作出賠償;哥倫比亞航空則主張已超過《蒙特婁公約》(Montreal Convention)第35條所訂之航空器抵達日起兩年內向法院提出損害賠償之請求時效。 R然而,法院審理過程中發現原告訴狀內引用之六個判決無法從判決系統中查詢,進而質疑判決之真實性。原告律師Steven A. Schwartz因而坦承訴狀中引用的六個判決是ChatGPT所提供,並宣稱針對ChatGPT所提供的判決,曾多次向ChatGPT確認該判決之正確性[2]。 貳、生成式AI應用之潛在風險 雖然運用生成式AI技術並結合自身專業知識執行特定任務,可能有助於提升效率,惟,從前述Roberto Mata v. Avianca, Inc.案亦可看出,依目前生成式AI技術之發展,仍可能產生資訊正確性疑慮。以下彙整生成式AI應用之8大潛在風險[3]: 一、能源使用及對環境危害 相較於傳統機器學習,生成式AI模型訓練將耗費更多運算資源與能源。根據波士頓大學電腦科學系Kate Saenko副教授表示,OpenAI的GPT-3模型擁有1,750億個參數,約會消耗1,287兆瓦/時的電力,並排放552噸二氧化碳。亦即,每當向生成式AI下一個指令,其所消耗的能源量相較於一般搜尋引擎將可能高出4至5倍[4]。 二、能力超出預期(Capability Overhang) 運算系統的黑盒子可能發展出超乎開發人員或使用者想像的隱藏功能,此發展將會對人類帶來新的助力還是成為危險的阻力,則會隨著使用者之間的相互作用而定。 三、輸出結果有偏見 生成式AI通常是利用公開資料進行訓練,若輸入資料在訓練時未受監督,而帶有真實世界既存的刻板印象(如語言、種族、性別、性取向、能力、文化等),據此建立之AI模型輸出結果可能帶有偏見。 四、智慧財產權疑慮 生成式AI進行模型訓練時,需仰賴大量網路資料或從其他大型資料庫蒐集訓練資料。然而,若原始資料來源不明確,可能引發取得資料未經同意或違反授權條款之疑慮,導致生成的內容存在侵權風險。 五、缺乏驗證事實功能 生成式AI時常提供看似正確卻與實際情形不符的回覆,若使用者誤信該答案即可能帶來風險。另外,生成式AI屬於持續動態發展的資訊生態系統,當產出結果有偏誤時,若沒有大規模的人為干預恐難以有效解決此問題。 六、數位犯罪增加與資安攻擊 過去由人工產製的釣魚郵件或網站可能受限於技術限制而容易被識破,然而,生成式AI能夠快速建立具高度說服力的各種擬真資料,降低詐騙的進入門檻。又,駭客亦有可能在不熟悉技術的情況下,利用AI進一步找出資安弱點或攻擊方法,增加防禦難度。 七、敏感資料外洩 使用雲端服務提供商所建立的生成式AI時,由於輸入的資料存儲於外部伺服器,若要追蹤或刪除有一定難度,若遭有心人士利用而導致濫用、攻擊或竄改,將可能產生資料外洩的風險。 八、影子AI(Shadow AI) 影子AI係指開發者未知或無法控制之AI使用情境。隨著AI模型複雜性增加,若開發人員與使用者未進行充分溝通,或使用者在未經充分指導下使用 AI 工具,將可能產生無法預期之風險。 參、事件評析 在Roberto Mata v. Avianca, Inc.案中,法院關注的焦點在於律師的行為,而非對AI技術使用的批判。法院認為,隨著技術的進步,利用可信賴的AI工具作為協助用途並無不當,惟,律師應踐行其專業素養,確保所提交文件之正確性[5]。 當AI科技發展逐漸朝向自主與獨立的方向前進,仍需注意生成式AI使用上之侷限。當個人在使用生成式AI時,需具備獨立思考判斷的能力,並驗證產出結果之正確性,不宜全盤接受生成式AI提供之回答。針對企業或具高度專業領域人士使用生成式AI時,除確認結果正確性外,更需注意資料保護及治理議題,例如建立AI工具合理使用情境及加強員工使用相關工具之教育訓練。在成本能負擔的情況下,可選擇透過企業內部的基礎設施訓練AI模型,或是在訓練模型前確保敏感資料已經加密或匿名。並應注意自身行業領域相關法規之更新或頒布,以適時調整資料使用之方式。 雖目前生成式AI仍有其使用之侷限,仍應抱持開放的態度,在技術使用與風險預防之間取得平衡,以能夠在技術發展的同時,更好地學習新興科技工具之使用。 [1]Mata v. Avianca, Inc., 1:22-cv-01461, (S.D.N.Y.). [2]Benjamin Weiser, Here’s What Happens When Your Lawyer Uses ChatGPT, The New York Times, May 27, 2023, https://www.nytimes.com/2023/05/27/nyregion/avianca-airline-lawsuit-chatgpt.html (last visited Aug. 4, 2023). [3]Boston Consulting Group [BCG], The CEO’s Roadmap on Generative AI (Mar. 2023), https://media-publications.bcg.com/BCG-Executive-Perspectives-CEOs-Roadmap-on-Generative-AI.pdf (last visited Aug. 29, 2023). [4]Kate Saenko, Is generative AI bad for the environment? A computer scientist explains the carbon footprint of ChatGPT and its cousins, The Conversation (May 23, 2023.), https://theconversation.com/is-generative-ai-bad-for-the-environment-a-computer-scientist-explains-the-carbon-footprint-of-chatgpt-and-its-cousins-204096 (last visited Sep. 7, 2023). [5]Robert Lufrano, ChatGPT and the Limits of AI in Legal Research, National Law Review, Volume XIII, Number 195 (Mar. 2023), https://www.natlawreview.com/article/chatgpt-and-limits-ai-legal-research (last visited Aug. 29, 2023).
數位內容通路商收購相關支援技術數位內容於廣播應用上銷售與管理解決方案的領導廠商拜斯法爾 (Pathfire, Inc)於日前收購了相關的支援技術 Digital Media Gateway (DMG) Server Connect for Programming,並將此一技術應用於十二個廣播站上。 在技術整合之後, 拜斯法爾的程式聯結伺服器,將得以直接將 DMG伺服器之數位內容傳輸至廣播站的空中播送伺服器,並保留原先的數位格式。 隨著廣播電視的數位化,數位內容、廣播電視與相關數位技術的整合,應是未來發展的趨勢。相關技術的整合與相關企業的轉投資與併購,應會持續增加。政府在擬定政策與相關法令之時,宜事先掌握相關趨勢,因勢利導,以達事半功倍之效。
美國國家公路交通安全管理局公布車輛網路安全最佳實踐,呼籲業界遵循美國國家公路交通安全管理局(National Highway Traffic Safety Administration, NHTSA)於2022年9月9日公布2022年最新版本之當代車輛網路安全最佳實踐(Cybersecurity Best Practices for the Safety of Modern Vehicles),強化政府對先進聯網車輛網路安全之把關。 文件將網路安全實踐項目區分為「一般網路安全最佳實踐」及「車輛技術網路安全最佳實踐」兩塊,前者主要為公司整體組織網路安全文化與監管機制之建立;後者則偏重於技術性的建議內涵。 「一般網路安全最佳實踐」共有45項要點,核心概念為:公司應訂定明確的網路安全評估程序,由領導階層負責相關監督責任,定期執行網路安全之風險評估及第三方公正稽核,並對其所發現之風險弱點採取保護措施並持續監控,同時應妥善保存所有網路安全相關之紀錄文件,並鼓勵與車輛同業聯盟彼此分享學習經驗。對於組織成員應適當提供網路安全教育訓練。於產品設計時,應將產品使用者、售後服務維修商,以及可能的外接式電子設備所帶來之風險一併納入安全設計考量。 「車輛技術網路安全最佳實踐」共有25項,核心理念為:對於產品開發人員,應建立存取權限管理,避免有心人士濫用權限。產品所使用的加密技術應隨時更新,若車輛具備診斷功能,應慎防遭到不當利用,且應防止車輛所搭載之感測器遭到惡意干擾或改動,感測器所收集到之資料則應能免於網路攻擊或竊取。應特別注意無線網路設備、空中軟體更新(Over-the-air, OTA)以及公司作業軟體所產生之風險漏洞。 本文件屬於自願性質,無法律強制力。但NHTSA期望在現有的車輛產業網路安全標準上,例如國際標準組織與國際汽車工程師協會(International Standards Organization, ISO/SAE International, SAE)先前所訂定的車輛網路安全標準ISO/SAE 21434的基礎前提下,進一步提出政府對車輛網路安全要求的努力。